Современная химия




АДИАБАТИЧЕСКАЯ КОНВЕРСИЯ МЕТАНА (АКМ)

адиабатическая конверсия метана (акм)

В ближайшей перспективе основным производственным процессом получения водорода и его производных в промышленных масштабах была и остается конверсия природного газа. По мере роста затрат на добычу и доставку газа с отдаленных газопромыслов всё большую сравнительную эффективность начинают приобретать технологии, сокращающие расход газа, сжигаемого как топливо, не только в энергетике, но и в других отраслях, а также в самой газовой промышленности.

С этой точки зрения в перспективе начнут формироваться экономические стимулы к созданию комбинированых технологий, в которых значительная часть энергетических процессов будет переводиться с углеводородного топлива на новые более эффективные и безопасные для окружающей среды энергоисточники и, в первую очередь, для крупнотоннажных производств и большой энергетики – на высокотемпературные ядерные реакторы следующего поколения.

Ведущей разработкой высокотемпературных газоохлаждаемых реакторов для различного применения стал проект модульного реакторного блока ГТ-МГР, разрабатываемый совместными усилиями компаний России, США, Японии.

На базе этого проекта по заказу Концерна «Росэнергоатом» выполнена концептуальная проектная проработка возможности привязки к реактору МГР производства водорода. Такой проект с ядерной энергоустановкой МГР-Т был проработан в сочетании с новым процессом производства водорода путем паровой адиабатической конверсии метана (АКМ)

Принципиальные особенности технологии АКМ как в привязке к ВТГР, так и при работе на сжигании отбросных газов в производстве синтез-газа (смесь водорода и оксидов углерода) обеспечивают бескислородное производство метанола и его производных при относительно невысоких капитальных затратах.

Технологии, предназначенные для доставки природного газа из отдаленных районов к потребителям, используют либо трубопроводный транспорт высокого давления, либо криогенные технологии получения сжиженного газа (LNG), либо, как это всё больше обсуждается, производство жидких продуктов из газа, так называемые технологии gas-to-liquid (GTL). Каждая из этих технологий имеет конкурентные выгоды и обладает, в свою очередь, недостатками, которые способны менять приоритетность технологий в зависимости от поставленной коммерческой задачи и условий её реализации.

Традиционные GTL продукты включают в себя, но не ограничиваются этим перечнем: метанол, уксусную кислоту, олефины, диметиловый эфир (ДМЭ), мочевину, аммиак, минеральные удобрения и синтетические углеводороды, производимые в процессе Фишера-Тропша (Ф-Т) и др. Процесс Ф-Т производит главным образом углеводородные синтетические продукты с различной длиной углеродной цепи, позволяя создавать тем самым низкокипящие алканы, алкены, полиоксиметилены, нафту, дистилляты, применяемые как реактивное или моторное топливо, смазочные масла, парафины.

GTL продукты могут распределяться и применяться по уже существующим отраслям, включая, в первую очередь, транспорт, с помощью существующей инфраструктуры.

Активность в области создания GTL производств возрастает: рассматривается до 55 проектов суммарной производительностью около 2 млн. барр./сут. (до 100 млн. т/год) с общим потреблением газа 166 млрд. м3/год. Около 20 крупнейших компаний нефтегазового сектора во главе с ExxonMobil, Shell, BP, ENI, ConocoPhillips, Sasol и др. ведут разработки технологий и создание производств в этой области. Мощность отдельных заводов выходит на 2 млн.т/год.

 


Читайте:


Добавить комментарий


Защитный код
Обновить

Новинки полимеров:

BASF ПРЕДСТАВИЛ НОВЫЙ ПБТ

News image

Путем направленной модификации структуры полиэфира, исследователи смогли увеличить проницаемость материала для лазерного излучения с 30 до 60 %. ПБТ...

НОВЫЙ ШАГ В ПОЛУЧЕНИИ БИОПОЛИМЕРОВ

News image

Преобразовать все основные виды сахара, содержащиеся в овощах, фруктах и садовых отходах, в высококачественную экологичную продукцию, например в био...

ВИДЫ ЛКМ ДЛЯ АЛЮМИНИЕВЫХ КОМПОЗИТНЫХ ПАНЕЛЕЙ

News image

Полиэстер - относительно недорогое покрытие с глянцевой поверхностью, подходящее для любых климатических условий. Основа покрытия - полиэфирная крас...

АМОРТИЗИРУЮЩИЙ МАТЕРИАЛ ИЗ ПОЛИЭФИРНЫХ ВОЛОКОН

News image

Пенополиуретан широко используется благодаря его высоким амортизирующим свойствам, продолжительному сроку службы и хорошей формуемости. Но, с другой...

Новые продукты оргсинтеза:

СИЛИКОНЫ ДЛЯ ОСТЕКЛЕНИЯ

News image

В первую очередь рассмотрим главные технические понятия, с помощью которых приводятся характеристики строительных герметиков. Позже рассмотрим характерные свойства отдельных типов силиконов, фокусир...

ПЕРСПЕКТИВНЫЕ МЕТОДЫ ПЕРЕРАБОТКИ РИСОВОЙ ЛУЗГИ

News image

Экспандированная рисовая шелуха Экспандированная рисовая шелуха – это прошедшая обработку высокой температурой и высоким давлением обычная рисовая шелуха, имеющая значительно увеличенную влагопог...

ТЕХНОЛОГИЯ ПРОИЗВОДСТВА ФРУКТОВЫХ НАПОЛНИТЕЛЕЙ

News image

Современные технологии производства фруктовых наполнителей позволяют получать продукт с различными органолептическими и физико-химическими показателями, с высокой степенью термостабильности - от мин...

Авторизация



YOU ARE HERE: Главная - Альтернативное топливо - АДИАБАТИЧЕСКАЯ КОНВЕРСИЯ МЕТАНА (АКМ)

Великие химики:

КАРНО (Carnot), Никола Леонар Сади

News image

Французский физик и военный инженер Никола Леонар Сади Карно, один из основателей термодинамики, родился в Париже в семье видного государственного д...

КАРЛЕ (Karle), Джером

News image

Американский химик Джером Карле родился в Нью-Йорке, в семье Луиса Карле и Сэйди (Кан) Карфанкл. Он вырос в Бруклине и окончил там в 1933 г. среднюю...

Институты химии:

Институт химической физики им. Н.Н. Семенова РАН

News image

Наш институт является одним из широко известных научных центров в мире, изучающих динамику элементарных химических процессов в различных системах и ...

Институт неорганической химии им. А.В. Николаева СО РАН

News image

Институт неорганической химии им. А.В. Николаева СО РАН организован в 1957 году в соответствии с Постановлением АН СССР № 607 от 09