Современная химия




Разработаны литий-ионные батареи рекордной емкости с кремниевыми анодами

разработаны литий-ионные батареи рекордной емкости с кремниевыми анодами

Возможность замены миллионов автомобилей по всему миру работающих на углеводородном топливе, на электромобили, представляет огромные экономические и экологические дивиденды. Но это также ставит задачу разработки технологий следующего поколения, необходим аккумулятор с гораздо большей плотностью энергии. Кремниевые анодовы в литий-ионных батареях - очень перспективный вариант.

На сегодняшний день, электромобили оснащаются никель-металл-гидридными аккумуляторными батареями. Они тяжелые, громоздкие, и обладают слишком низкой удельной энергией, около 80 ватт часов на килограмм (Вт ч / кг), для дальних поездок. Литий-ионные аккумуляторы, которые широко применяются в портативной электронике, обладают большими возможностями. Состоящие из трех основных компонентов: графитового анода, катода и электролита (литиевой соли растворенной в органическом растворителе), графитовый анод обладает удельной мощностью около 350 мАч / г. Литий-ионные аккумуляторы с графитовыми анодами показывают содержание удельной энергии более 160 Вт ч / кг, что вдвое больше никель-металл-гидридных.

Если мы хотим увеличить пробег электрических транспортных средств, у нас должны быть гораздо более мощные батареи, как минимум в два раза мощнее, литий-ионных аккумуляторов с графитовыми электродами - говорит д-р Джейсон Чжан, исследователь из PNNL.

Одним из факторов, сдерживающих разработку литий-ионных батареи, является их графитовый анод. Литий проникает в графит при зарядке батареи и выводится при ее использовании. Графитовые аноды используются почти во всех литий-ионных батареях, но последние исследования показали, что лучшим решением для анода является кремний. Предполагаемая мощность таких аккумуляторов может быть до 10 раз большей, чем у графитовых, хотя пока достигли только двойного увеличения емкости. Однако, дает о себе знать та же проблема - поглощение лития и расширение при этом во время зарядки, вследствие чего кремний быстро разрушается.
Задача исследователей PNNL: воспользоваться преимуществами высокой емкости кремния, и найти способ сохранения анода от разрушения при циклах зарядки - разрядки.

Чжан и команда исследователей поставили перед собой задачу по созданию структуры кремниевых частиц, которая позволит сохранить целостность элемента при эксплуатации. Для увеличения прочности они наноструктурировали пористый кремний, химически осадили пары углерода, образовав пленку на поверхности и нанесли очень упругую сажу марки Ketjen Black , для улучшения электропроводности. Ученые разместили эти аноды между графеновыми плоскими листами, для поддержания сильного электрического контакта между частицами кремния.
После проверки таких анодов в лаборатории обнаружилось, что они обладают обратимой мощностью более 1600 мА ч / г после 40 циклов зарядки - разрядки. Это более чем в два раза превышает мощность обычных литий-ионных батарей с графитовыми анодами.

Команда исследователей продолжает работу над улучшением производительности и устойчивости кремниевых анодов от 40 - 50 циклов сегодня, до 500 циклов. Одним из решений может быть разработка лучшего связующего, которое сможет увеличить механическую прочность и электропроводность.

 


Читайте:


Добавить комментарий


Защитный код
Обновить

Новинки полимеров:

К НЕПРЕРЫВНОМУ ЦИКЛУ: будущее переработки пластмасс

News image

Пример, представленный в виде диаграммы, изображен на рисунке 1 - Примеры линейных операций.

НОВЫЕ ДОБАВКИ LANXESS ДЛЯ ШИННОЙ ПРОМЫШЛЕННОСТИ

News image

ДФГ широко используется в производстве топливосберегающих силиконовых шин, но не подходит для комбинации с силанами, такими как Si 363. Более того, ...

Изготовленные по ГОСТ металлические изделия в каталоге shoptruba.ru

News image

Сегодня приобретает популярность услуга по выполнения из металлопроката разных изделий. При помощи использования новых мощностей также и современных т...

ВИДЫ ЛКМ ДЛЯ АЛЮМИНИЕВЫХ КОМПОЗИТНЫХ ПАНЕЛЕЙ

News image

Полиэстер - относительно недорогое покрытие с глянцевой поверхностью, подходящее для любых климатических условий. Основа покрытия - полиэфирная крас...

Новые продукты оргсинтеза:

ПЕРСПЕКТИВЫ ИСПОЛЬЗОВАНИЯ ФУМАРОВОЙ КИСЛОТЫ В ФАРМАЦЕВТИКЕ

News image

Известно, что фармацевтические композиции, которые после введения при их биологическом разложении попадают в цикл лимонной кислоты или входят в его состав, как фумаровая кислота, чаще всего в высоко...

ЦИКЛ ЛИМОННОЙ КИСЛОТЫ

News image

Цикл лимонной кислоты или цикл Кребса – широко представленный в организмах животных, растений и микробов путь окислительных превращений ди - и трикарбоновых кислот, образующихся в качестве промежуто...

РЕКОНСТРУКЦИЯ в «АХЕМЕ»: опыт и результаты

News image

На прошедшей недавно международной конференции «Метанол и производные», организованной компанией Креон представители литовской фирмы Ахема поделились уникальным опытом реконструкции своего старого ...

Авторизация



YOU ARE HERE: Главная - Новости неорганической химии - Разработаны литий-ионные батареи рекордной емкости с кремниевыми анодами

Великие химики:

ВАНТ-ГОФФ (van't Hoff), Якоб Генрик

News image

Нидерландский химик Якоб Генрик Вант-Гофф родился в Роттердаме, в семье врача Якоба Генрика Вант-Гоффа. По настоянию родителей Вант-Гофф начал изуча...

ГАБЕР (Haber), Фриц

News image

Немецкий химик Фриц Габер родился в г. Бреслау (ныне г. Вроцлав, Польша) и был единственным сыном Зигфрида Габера и его первой жены, его кузины Паул...

Институты химии:

Учреждение российской академии наук Институт структурной макрокинетики и проблем материаловедения РА

News image

Институт структурной макрокинетики и проблем материаловедения Российской Академии Наук (акроним ИСМАН) является молодым развивающимся академическим ...

Учреждение Российской академии наук Институт металлоорганической химии им. Г.А. Разуваева РАН

News image

Институт металлоорганической химии создан в 1988 г. Институт участвует в программах РАН Разработка методов получения химических веществ и созда...