В молекуле воды связи, идущие от центра атома кислорода о к обоим атомам водорода, образуют угол около 104°.
Как известно, атомы в соединениях склонны к образованию заполненных электронных оболочек. В нашем случае (с водой) это означает, что оба электрона связи водорода притянуты к кислороду, который более электроотрицателен. Но речь здесь идет не о полной ионизации, а о смещении центра тяжести заряда, когда образуется соединение частично ионного характера. В результате молекулы воды приобретают свойства электрического диполя с отрицательным концом на атоме кислорода, а положительным — на атомах водорода. Эта особенность имеет огромное практическое значение, так как многие по сравнению с другими жидкостями необычные свойства воды обусловлены природой диполя. Так, молекулы воды легко образуют тетраэдрическую структуру. Это упорядочение, которое усиливается ниже 4°С, объясняет, почему вода обладает минимальной плотностью при 4°С, а пористость молекулярной структуры льда примерно на 10 % больше, чем у жидкой воды. Большое внешнее давление не препятствует увеличению объема при замерзании — в этом с досадой убеждаются шоферы, поглядев на размороженный мотор или радиатор. Воспроизведем этот процесс: пузырек из-под лекарства до краев наполним водой, плотно закроем завинчивающейся крышкой и поставим на мороз или в морозильник.
Соединение молекул воды можно представить себе как притяжение разноименно заряженных концов диполей. Атомы водорода соединены с двумя намного большими атомами кислорода специфической связью ионного характера, которую называют мастиковой водородной связью. Вследствие своего дипольного характера молекулы воды в особенной степени обладают способностью к адсорбции (присоединению) на поверхностях раздела. Большинство твердых веществ во влажном воздухе покрыто только мономолекулярным адсорбционным слоем воды. На стеклах благодаря присоединению молекул воды силикатами щелочных металлов образуются поверхностные пленки, в которых вода довольно прочно связана. Давайте убедимся в этом. В круглодонную колбу положим несколько кристалликов обезвоженного хлорида кобальта (II) и закроем колбу куском ваты. При нагревании на проволочной сетке в пламени бунзеновской горелки до температуры свыше 150 °С выделится значительное количество адсорбированной воды, которая при охлаждении частично поглотится хлоридом кобальта (II) и изменит его цвет с голубого на красный. Эффект проявится еще более отчетливо, если мы поместим в колбу немного толченого стекла или стеклянной ваты. При дальнейшем нагревании до температуры свыше 300 °С из стекла вновь выделяется вода, поэтому стеклянные части высоковакуумной аппаратуры отжигают до температуры размягчения.