Современная химия




Новые секреты синтеза аммиака

новые секреты синтеза аммиака

Исследователи из Кембриджа работают над увеличением эффективности хорошо известного химического процесса – синтеза аммиака. Результаты их исследования могут оказать существенное влияние, как на сельское хозяйство, так и на энергетический сектор мировой экономики.

Производство аммиака – единственный в настоящее время масштабный промышленный процесс фиксации атмосферного азота

Аммиак является одним из самых важных продуктов крупнотоннажного химического производства, главным образом он применяется в производстве удобрений и азотной кислоты. Наиболее часто применяющийся метод получения аммиака – процесс Габера или Боша-Габера, из аммиака, получающегося таким способом, ежегодно получают около миллиона тонн удобрений ежегодно, что обеспечивает нужды сельского хозяйства около трети населения Земли.

В природе аммиак вырабатывается в результате жизнедеятельности растений (преимущественно бобовых) и бактерий, связывающих атмосферный азот в результате биохимических процессов. Биохимическая фиксация атмосферного азота происходит при обычных температурах и атмосферном давлении, однако для промышленного получения аммиака требуется большое давление (150-250 атмосфер) и высокие температуры (300-550°C). На производство аммиака расходуется около 3-5% природного газа, что составляет 1-2% мировых энергетических запасов.

Стив Дженкинс (Steve Jenkins), принимавший активное участие в исследовании, отмечает, что, хотя процесс Боша-Габера был разработан еще в начале ХХ века, к настоящему времени он практически не изменился. Таким образом, учитывая масштабы производства аммиака, даже незначительное увеличение эффективности получения этого продукта должно приводить к значительному экономическому выигрышу не только на рынке химических удобрений, но и к изменению ситуации на энергетическом рынке.

Ключом для процесса Боша-Габера является катализатор – железо, на котором происходит диссоциация молекулярного азота, образующиеся в результате этой термической диссоциации атомы азота последовательно гидрируются до NH, NH2 и NH3.

За последние десятилетие было проведено большое количество исследований, посвященных исследованию механизма работы катализатора, почему легирование железа некоторыми элементами (например, калием) увеличивает эффективность катализа, и можно ли a priori теоретически предсказать состав и строение эффективного катализатора.

Исследователи из группы Дженкинса решили изучить механизм реакции образования аммиака, взяв высокочистый монокристалл железа и проводя эксперименты при сверхвысоком разрежении.

Это кристалл железа бомбардировали ионами азота, стремясь получить покрытие из ионов азота, расположенных на поверхности железа. Сверхвысокое разрешение позволило исследовать такую поверхность помощью Оже электронной спектроскопии [Auger Electron Spectroscopy (AES)] позволило количественно определить степень заселенности поверхности железа атомами азота, после чего обработали образец молекулярным водородом, нагнетенным при давлении 0.6 миллибар. Это давление конечно невозможно сравнивать с давлением, применяющимся в промышленных процессах получения аммиака, хотя и при таком давлении применять Оже электронную спектроскопию уже не удавалось.

После выдерживания образца в атмосфере водорода в течение нескольких минут (за это время уже успевало пройти гидрирование части атомов азота) в камере с образцом снова создавали ультравысокое разрежение и с помощью спектроскопии AES определяли, какое количество атомов азота осталось связанным с поверхностью образца. После такого измерения образец снова подвергали воздействию водорода, затем снова создавали разрежение и т.д. Несколько таких циклов позволило отобразить скорость гидрирования атомов азота как функцию времени и температуры. Полученные результаты можно использовать для оптимизации стадии гидрирования в промышленном производстве аммиака.

 

 


Читайте:


Добавить комментарий


Защитный код
Обновить

Новинки полимеров:

ОБРАБОТКА ПОЛИМЕРА УГЛЕКИСЛЫМ ГАЗОМ

News image

Исследователи Фраунгоферовского Института Безопасности Окружающей среды и Энергетических технологий (UMSICHT) в Оберхаузене, преследуя новую идею ис...

ТЕХНОЛОГИЯ УСИЛЕНИЯ ЗДАНИЙ УГЛЕВОЛОКНИСТЫМИ МАТЕРИАЛАМИ

News image

Углеродные волокна (УВ) – органический материал, содержащий 92 - 99,99 % углерода. Углеродные волокна получают путем ступенчатой термообработки разл...

РАЗВИТИЕ ТЕХНОЛОГИИ ПРОИЗВОДСТВА ПОФ ПЛЕНОК

News image

Интересно отметить, что в связи с тем, что эффект «пленочной глазури» улучшает внешний вид товара и защищает от пыли, ПОФ-пленки используют для упак...

«ТНК АЛЬФАБИТ»: ТНК представила ПБВ

News image

При соблюдении технологии укладки битум позволяет увеличить гарантированный срок службы дороги с 2-3 до 7-10 лет по сравнению с обычными битумами бе...

Новые продукты оргсинтеза:

РЕШЕНИЯ BASF ДЛЯ ПРОИЗВОДИТЕЛЕЙ ПИВА

News image

Компания BASF представила разработки в технологических вспомогательных средств для фильтрации, используемых в производстве пива, на выставке Brau Beviale (г. Нюрнберг, Германия) Потребители при...

ГЛУБОКАЯ ПЕРЕРАБОТКА УГЛЯ: перспективы и инновации

News image

В июле 2008 года по инициативе энергетиков администрация Кемеровской области обязала угольные компании Кузбасса сменить приоритеты. Первоочередными стали отгрузки топлива на ТЭЦ, а об исполнении экс...

ПЕРСПЕКТИВЫ ИСПОЛЬЗОВАНИЯ ФУМАРОВОЙ КИСЛОТЫ В ФАРМАЦЕВТИКЕ

News image

Известно, что фармацевтические композиции, которые после введения при их биологическом разложении попадают в цикл лимонной кислоты или входят в его состав, как фумаровая кислота, чаще всего в высоко...

Авторизация



YOU ARE HERE: Главная - Новости неорганической химии - Новые секреты синтеза аммиака

Великие химики:

КАРЛЕ (Karle), Джером

News image

Американский химик Джером Карле родился в Нью-Йорке, в семье Луиса Карле и Сэйди (Кан) Карфанкл. Он вырос в Бруклине и окончил там в 1933 г. среднюю...

ЖЕРАР (Gerhardt), Шарль Фредерик

News image

Французский химик Шарль Фредерик Жерар родился в Страсбурге в семье банковского служащего. Окончив протестантскую семинарию в возрасте 15 лет, посту...

Институты химии:

Новосибирский институт органической химии (НИОХ)

News image

Новосибирский институт органической химии (НИОХ) был создан 27 июня 1958 года в составе Сибирского отделения Академии наук СССР согласно постановлен...

Институт химии твердого тела УрО РАН

News image

Институт химии твердого тела Уральского отделения Российской Академии Наук (ИХТТ УрО РАН) - один из ведущих научных центров фундаментальных и прикла...