Современная химия




Новые секреты синтеза аммиака

новые секреты синтеза аммиака

Исследователи из Кембриджа работают над увеличением эффективности хорошо известного химического процесса – синтеза аммиака. Результаты их исследования могут оказать существенное влияние, как на сельское хозяйство, так и на энергетический сектор мировой экономики.

Производство аммиака – единственный в настоящее время масштабный промышленный процесс фиксации атмосферного азота

Аммиак является одним из самых важных продуктов крупнотоннажного химического производства, главным образом он применяется в производстве удобрений и азотной кислоты. Наиболее часто применяющийся метод получения аммиака – процесс Габера или Боша-Габера, из аммиака, получающегося таким способом, ежегодно получают около миллиона тонн удобрений ежегодно, что обеспечивает нужды сельского хозяйства около трети населения Земли.

В природе аммиак вырабатывается в результате жизнедеятельности растений (преимущественно бобовых) и бактерий, связывающих атмосферный азот в результате биохимических процессов. Биохимическая фиксация атмосферного азота происходит при обычных температурах и атмосферном давлении, однако для промышленного получения аммиака требуется большое давление (150-250 атмосфер) и высокие температуры (300-550°C). На производство аммиака расходуется около 3-5% природного газа, что составляет 1-2% мировых энергетических запасов.

Стив Дженкинс (Steve Jenkins), принимавший активное участие в исследовании, отмечает, что, хотя процесс Боша-Габера был разработан еще в начале ХХ века, к настоящему времени он практически не изменился. Таким образом, учитывая масштабы производства аммиака, даже незначительное увеличение эффективности получения этого продукта должно приводить к значительному экономическому выигрышу не только на рынке химических удобрений, но и к изменению ситуации на энергетическом рынке.

Ключом для процесса Боша-Габера является катализатор – железо, на котором происходит диссоциация молекулярного азота, образующиеся в результате этой термической диссоциации атомы азота последовательно гидрируются до NH, NH2 и NH3.

За последние десятилетие было проведено большое количество исследований, посвященных исследованию механизма работы катализатора, почему легирование железа некоторыми элементами (например, калием) увеличивает эффективность катализа, и можно ли a priori теоретически предсказать состав и строение эффективного катализатора.

Исследователи из группы Дженкинса решили изучить механизм реакции образования аммиака, взяв высокочистый монокристалл железа и проводя эксперименты при сверхвысоком разрежении.

Это кристалл железа бомбардировали ионами азота, стремясь получить покрытие из ионов азота, расположенных на поверхности железа. Сверхвысокое разрешение позволило исследовать такую поверхность помощью Оже электронной спектроскопии [Auger Electron Spectroscopy (AES)] позволило количественно определить степень заселенности поверхности железа атомами азота, после чего обработали образец молекулярным водородом, нагнетенным при давлении 0.6 миллибар. Это давление конечно невозможно сравнивать с давлением, применяющимся в промышленных процессах получения аммиака, хотя и при таком давлении применять Оже электронную спектроскопию уже не удавалось.

После выдерживания образца в атмосфере водорода в течение нескольких минут (за это время уже успевало пройти гидрирование части атомов азота) в камере с образцом снова создавали ультравысокое разрежение и с помощью спектроскопии AES определяли, какое количество атомов азота осталось связанным с поверхностью образца. После такого измерения образец снова подвергали воздействию водорода, затем снова создавали разрежение и т.д. Несколько таких циклов позволило отобразить скорость гидрирования атомов азота как функцию времени и температуры. Полученные результаты можно использовать для оптимизации стадии гидрирования в промышленном производстве аммиака.

 


Читайте:


Добавить комментарий


Защитный код
Обновить

Новинки полимеров:

НОВЫЕ АНТИПРИГАРНЫЕ ПОКРЫТИЯ TEFLON

News image

Покрытия, в основу которых положена запатентованная технология, первыми в своей отрасли получили допуск к контакту с пищевыми продуктами. Производит...

ИННОВАЦИИ В ЭКСТРУЗИИ: система RSFgenius

News image

Нарушения в работе линии, её простои неизбежно ведут к сокращению доходов от производства. Поэтому наряду с такими компонентами, как экструдер, форм...

ТЕХНОЛОГИЯ УСИЛЕНИЯ ЗДАНИЙ УГЛЕВОЛОКНИСТЫМИ МАТЕРИАЛАМИ

News image

Углеродные волокна (УВ) – органический материал, содержащий 92 - 99,99 % углерода. Углеродные волокна получают путем ступенчатой термообработки разл...

РАЗВИТИЕ ТЕХНОЛОГИИ ПРОИЗВОДСТВА ПОФ ПЛЕНОК

News image

Интересно отметить, что в связи с тем, что эффект «пленочной глазури» улучшает внешний вид товара и защищает от пыли, ПОФ-пленки используют для упак...

Новые продукты оргсинтеза:

ЛИМОННАЯ КИСЛОТА: свойства, применение, рынок

News image

Специалисты утверждают, что, она содержится, по крайней мере, в половине всех пищевых продуктов. Не случайно по объему производства лимонная кислота является одним из главных продуктов микробного си...

ИСПОЛЬЗОВАНИЕ ЛУЗГИ РИСА В ПРОИЗВОДСТВЕ КРЕМНИЯ

News image

Несмотря на то, что кремний использовался первобытным человеком ещё 600 тысяч лет назад в виде каменных орудий труда, возможности этого элемента и его соединений раскрывались в течение столетий чрез...

НОВЫЕ РАЗРАБОТКИ «БИОКАДА»: биоаналог ритуксимаба

News image

Эффективность и безопасность российского биоаналога ритуксимаба показана в доклинических исследованиях Биотехнологическая компания «БИОКАД» успешно провела серию экспериментальных исследований, п...

Авторизация



YOU ARE HERE: Главная - Новости неорганической химии - Новые секреты синтеза аммиака

Великие химики:

БАЙЕР (Baeyer), Адольф фон

News image

Немецкий химик Иоганн Фридрих Вильгельм Адольф фон Байер родился в Берлине. Он был старшим из пяти детей Иоганна Якоба Байера и Евгении (Хитциг) Бай...

МЕНДЕЛЕЕВ, Дмитрий Иванович

News image

Русский химик Дмитрий Иванович Менделеев родился в Тобольске в семье директора гимназии. Во время обучения в гимназии Менделеев имел весьма посредст...

Институты химии:

Институт высокотемпературной электрохимии УрО РАН

News image

Институт высокотемпературной электрохимии (ИВТЭ) был основан в конце 1957 г. на базе лаборатории электрохимии расплавленных солей Уральского филиала...

Институт органического синтеза им. И. Я. Постовского

News image

Институт органического синтеза им. И. Я. Постовского Уральского отделения РАН (ИОС УрО РАН) создан постановлением Президиума РАН от 29