Современная химия




BASF ПРЕДСТАВИЛ НОВЫЙ ПБТ

basf представил новый пбт

Путем направленной модификации структуры полиэфира, исследователи смогли увеличить проницаемость материала для лазерного излучения с 30 до 60 %. ПБТ с такими высокими и постоянными показателями представляет собой уникальный материал и никогда ранее не был доступен на глобальном рынке. Благодаря значительно улучшенной проницаемости, появляется возможность значительно увеличить скорость сварки и расширить технологические возможности переработки. При использовании стандартного ПБТ и лазера с длиной волны 1064 нанометров, скорость сварки составляет всего 5-12 миллиметров в секунду. В случае же нового материала Ultradur LUX, скорость может достигать 10-70 миллиметров в секунду.
Лазерная сварка – чистая технология соединения материалов

По сравнению с другими методами соединения, при использовании лазерной сварки отсутствует истирание частиц с поверхности (как в случае сварки трением или ультразвуковой сварки), отпадает необходимость в хранении других материалов, таких как клей или грунтовка, нет чрезмерной вибрации. Отсутствие вибраций в процессе соединения особенно важны тогда, если в одну из двух свариваемых деталей интегрированы чувствительные компоненты. Таким образом, преимущества лазерной сварки чрезвычайно важны при обработке малогабаритных деталей, требующих использования гибкой геометрической конструкции и чистых методов обработки. В особенности это относится к электронным и медицинским компонентам, таким как корпуса блоков управления двигателем автомобиля или агрегаты с датчиками. Принцип лазерной сварки состоит в том, что лазерный луч проходит через деталь, пропускающую лазерное излучение и расплавляет расположенный за ним компонент, поглощающий лазерные лучи (рис. 2). Расплавленный пластик передает тепло материалу, проницаемому для лазерного излучения, и, таким образом образуется сварной шов. Следовательно, необходимым условием для осуществления лазерной сварки является объединение материалов, один из которых пропускает, а другой поглощает лазерное излучение.

Несмотря на то, что в настоящее время применяются специальные марки материала Ultradur, обладающие особыми характеристиками в плане лазерной сварки, эти решения оставляют возможность модернизации, не только за счет того, что они по своей природе обладают низкой проницаемостью для лазерного излучения, но и за счет сложности в сохранении этого показателя постоянным. Проблема с показателем проницаемости для лазерного излучения состоит в том, что слишком низкое его значение может привести к увеличению длительности цикла, а это, в свою очередь, вызвать образование дефектов или вообще исключить возможность лазерной сварки. В некоторой степени этот эффект может быть скомпенсирован за счет увеличения времени сварки. Однако, это повышает вероятность сгорания или деструкции материала.

Если среднее значение проницаемости для лазерного излучения достаточно низко, то отклонения от этого значения могут оказывать особо негативное воздействие, вплоть до того, что лазерная сварка не сможет быть выполнена в рамках допустимых технологических условий. Кроме того, появляется вероятность повреждения обрабатываемой детали. Так как лазерная сварка обычно является последним производственным этапом, появление дефектов на этой стадии обозначает потерю всей стоимости продукта. Для компонентов, содержащих в себе высококачественные электронные модули, сумма легко может достигать 100 евро за штуку. Таким образом, потерянная стоимость превышает затраты на сырье, проницаемое для лазерного излучения, приблизительно в 1000 раз. Целью компании была разработка в рамках серии Ultradur продукта с повышенной и постоянной лазерной проницаемостью. Для достижения этой цели потребовался опыт больших групп физиков, химиков, инженеров и рыночных специалистов.

Сильное рассеивание луча за счет больших сферолитов

Лазерная сварка полукристаллических термопластов принципиально сложнее, чем в случае с аморфными продуктами, так как лазерный луч рассеивается сферолитами (рис. 3). Эта проблема, общая для всех полукристаллических полимеров, достаточно четко проявляется и при обработке ПБТ. По сравнению с полиамидом 6, пластина аналогичной толщины, выполненная из ПБТ, пропускает значительно меньшее количество лазерного излучения. Это происходит из-за более высокой степени отраженного рассеивания (рис. 4). Кроме того, выше степень расширения проходящего луча.

Известно, что отклонение лучей света значительно снижается в случае, если центр рассеивания меньше длины световой волны. Для наиболее распространенного лазера Nd-YAG, она составляет около 1000 нанометров (т.е. 1 микрон/мкм). Следовательно, решение проблемы состояло в ограничении пространственного расширения сферолитов до максимум 1 мкм. В результате многочисленных экспериментов, исследовательской группе BASF удалось осуществить такую модификацию. Новый материал Ultradur, получивший маркировку LUX, обладает более тонкой структурой и, соответственно, значительно более стабильной проницаемостью для лазерного излучения (рис. 5), чем другие марки ПБТ, доступные на рынке. Механические свойства материала находятся на уровне, сравнимым с уже известными продуктами серии Ultradur.

Улучшение оптических характеристик

Весьма существенное улучшение оптических характеристик ПБТ можно легко оценить по кривым прохождения. При длине волны лазера Nd-YAG, Ultradur LUX пропускает приблизительно в два раза больше света, чем стандартный ПБТ (рис. 6 и 7).

Повышена не только проницаемость для лазерного излучения – качество пропущенного лазерного луча также значительно увеличилось. Посредством экспериментов по рассеиванию с помощью так называемого фотометрического шара, было показано, что традиционный неармированный ПБТ практически не допускает прямого прохождения света с длиной волны, необходимой для лазерной сварки; все лучи в той или иной степени рассеиваются. Для Ultradur LUX при длине волны лазера Nd-YAG, напротив, прямое пропускание света составляет 50%, кроме того, лазерный луч расширяется в значительно меньшей степени.

Практическую важность этих теоретических значений легко увидеть, подставив тесовые пластины под солнечные лучи. Даже из этого простого эксперимента можно сделать вывод о значительном увеличении пропускания света у материала Ultradur LUX. Учитывая, что проницаемость материала для лазерного излучения значительно выше, чем для естественного света (380-780 нм), можно утверждать, что сделан большой шаг вперед в области качества пластмасс.

 

 


Читайте:


Добавить комментарий


Защитный код
Обновить

По лучшим ценам: Учебники для вузов - новости.

Новинки полимеров:

PIR-ПЕНОПЛАСТЫ

News image

Они обеспечивают повышенную теплoстойкость, огнестойкость, устойчивость к воздействию химических веществ и размерную стабильность.

Новый способ отбелки зубной эмали

News image

Учёные-химики из КНР использовали комбинацию полиакриламида, полиэтиленоксида и фторапатита с целью получения пленки, способной вернуть зубам белы...

Из-за чего свадебный фотограф может иметь разную ценовую политику

Подыскать специалиста по фотографии под свои возможности финансовой стороны задачи сегодня не представляет собой какой-либо сложности. В то время как ...

Изготовленные по ГОСТ металлические изделия в каталоге shoptruba.ru

News image

Сегодня приобретает популярность услуга по выполнения из металлопроката разных изделий. При помощи использования новых мощностей также и современных т...

Новые продукты оргсинтеза:

АКТИВНЫЕ ФАРМАЦЕВТИЧЕСКИЕ ИНГРЕДИЕНТЫ: компетенции Saltigo

News image

По мнению д-ра Штоля, небольшие шаги также могут способствовать достижению успеха. «Не всегда существует необходимость строительства нового завода.

НОВЫЙ ГЕЛЬ ИЗЛЕЧИТ ОТ КАРИЕСА

News image

Институт медицинских исследований Франции объявил о положительных результатах тестирования своего инновационного метода лечения зубов. Гель, об изобретении которого было объявлено некоторое время...

ФУМАРОВАЯ КИСЛОТА

News image

Продукт не токсичен. Фумаровая кислота широко используется в кормлении птицы. Установлено 5 основных функций фумаровой кислоты в организме птицы:

Авторизация



YOU ARE HERE: Главная - Новинки полимеров - BASF ПРЕДСТАВИЛ НОВЫЙ ПБТ

Великие химики:

ВИЛАНД (Wieland), Генрих Отто

News image

Немецкий химик Генрих Отто Виланд родился в Пфорцхайме, в семье фармацевта Теодора Виланда и Элизы (Блом) Виланд. Получив начальное и среднее образо...

ОНЗАГЕР (Onsager), Ларс

News image

Норвежско-американский химик Ларс Онзагер родился в Осло, в семье Эрлинга Онзагера, адвоката Верховного суда Норвегии, и Ингрид (Киркеби) Онзагер. П...

Институты химии:

Институт элементоорганических соединений им. А.Н. Несмеянова РАН

News image

Институт элементоорганических соединений Российской Академии наук был организован в 1954 г. Огромный вклад в его создание внес выдающийся ученый, ...

Институт неорганической химии им. А.В. Николаева СО РАН

News image

Институт неорганической химии им. А.В. Николаева СО РАН организован в 1957 году в соответствии с Постановлением АН СССР № 607 от 09