Современная химия




Супрамолекулярная химия в современном состоянии

супрамолекулярная химия в современном состоянии

Сколько вы обычно носите в сумке или в кармане ключей? Наверняка, у вас есть ключ от внешней и внутренней дверей квартиры, скорее всего от почтового ящика, ну а у тех, кто работает или водит машину, еще, как минимум, найдется пара ключей. Но сколько бы их ни было, каждый ключ подходит только к строго определенному замку – в этом-то и заключается смысл существования ключа (и замка тоже). Оказывается, на аналогичном принципе “ключ-замок” основана способность биологических молекул к самоорганизации и селективному взаимодействию с другими частицами, называемая молекулярным распознаванием. Только благодаря ей возможно, например, образование двойных спиралей ДНК или возникновение – в ответ на попадание чужеродного тела в организм – иммунных реакций, заключающихся в синтезе специальных белков для нейтрализации «непрошенных гостей». Стремление исследователей реализовать такие процессы в искусственно созданных системах было настолько велико, что привело к формированию на рубеже 80-90-х годов отдельной области химии, названной французским ученым Ж.-М. Леном (лауреатом нобелевской премии) супрамолекулярной химией.

Супрамолекулярная химия – раздел химии, описывающий сложные образования, которые являются результатом ассоциации двух и более химических частиц, связанных вместе межмолекулярными силами. Супрамолекулярная химия – химия молекулярных ансамблей и межмолекулярных связей.

Современная супрамолекулярная химия изучает процессы молекулярного распознавания и селективного связывания молекул в так называемые супермолекулы и супрамолекулярные ансамбли. «Супрамолекулы» представляют собой отдельные крупные образования, состоящие из большого, но обязательно конечного числа молекулярных олигомеров. В то же время супрамолекулярные ансамбли, к которым относятся мембраны, везикулы, «мицеллы», «дендримеры», «блоксополимеры», клатраты, являются полимолекулярными системами, возникающими в результате спонтанной ассоциации компонентов и обладающие определенной пространственной организацией, с которой часто связаны уникальные физико-химическими свойства.

Образование супермолекул подразумевает комплементарность (геометрическую и химическую взаимодополняемость) составляющих ее элементов, называемых молекулярными рецептором и субстратом. Во всех супрамолекулярных системах рецептор (хозяин) содержит молекулярные центры (точно так же как замок – замочную скважину), нацеленные на селективное связывание определенного субстрата-«ключа» (или «гостя»). Как и в обычной химии, для связывания молекул должны возникнуть определенные взаимодействия, за счет которых произойдет упорядочение в пространстве молекулярных блоков и сформируется супрамолекулярная «архитектура». Однако, в отличие от привычных нам молекул, в которых атомы объединены ковалентными или ионными связями, в «супермолекулах» удерживание отдельных фрагментов происходит за счет невалентных межмолекулярных взаимодействий, к которым относятся водородные связи, электростатические силы и лиофильные-лиофобные взаимодействия. Почему же супрамолекулярные системы не распадаются на составные части, спросите вы – ведь энергия таких взаимодействий на 1-2 порядка ниже энергии валентных связей? Конечно, если подвесить тяжелый предмет на тонкой ниточке, то она обязательно порвется, однако если таких нитей будет много, нагрузка распределится между ними равномерно – получится прочный канат. Вот и в случае слабых связей в ансамблях – когда их становится много, это приводят к образованию устойчивых и вместе с тем гибко изменяющих свою структуру ассоциатов. Такое сочетание прочности и способности быстро и обратимо реагировать на внешние воздействия является характерной чертой всех биологических молекулярных систем – нуклеиновых кислот, ферментов, белков. Однако супрамолекулярная химия далеко не ограничивается биологическими системами – аналогичные принципы действуют и при образовании неорганических комплексных соединений типа “гость-хозяин”. К примеру, в случае краун-эфиров наличие кислородных центров дает возможность образования устойчивых комплексов с ионами металлов, селективность к которым строго определяется соответствием размера металла объему внутренней полости цикла.

Для супрамолекулярных систем важнейшим является принцип комплементарности: геометрическое, топологическое и зарядовое соответствие гостя и хозяина. Размер полости хозяина определяет размер «желанного» гостя; чем точнее соответствие «гость-хозяин», тем выше устойчивость ансамбля.

В настоящее время новая область неорганической химии – химия клатратов и соединений внедрения - активно развивается, внося огромный вклад как в фундаментальные знания, так и в практические разработки новых материалов. Это обусловлено тем, что уже сегодня супрамолекулярные системы находят широкое применение в сорбции и селективном катализе, рассматриваются в качестве наиболее перспективных кандидатов для захоронения радиоактивных отходов и разработки лекарственных препаратов нового поколения: так, если помимо центров распознавания и связывания рецептор содержит другие функциональные группы, то после образования супрамолекулярной системы он может выступать в роли носителя, осуществляя направленный транспорт связанного с ним субстрата в определенные области организма.

 

 


Читайте:


Добавить комментарий


Защитный код
Обновить

Новинки полимеров:

К НЕПРЕРЫВНОМУ ЦИКЛУ: будущее переработки пластмасс

News image

Пример, представленный в виде диаграммы, изображен на рисунке 1 - Примеры линейных операций.

АМОРТИЗИРУЮЩИЙ МАТЕРИАЛ ИЗ ПОЛИЭФИРНЫХ ВОЛОКОН

News image

Пенополиуретан широко используется благодаря его высоким амортизирующим свойствам, продолжительному сроку службы и хорошей формуемости. Но, с другой...

БУМАГА ВМЕСТО ХОЛОДИЛЬНИКОВ

News image

Израильские исследователи из Бар-Иланского Университета совместно с коллегами из Красноярского Института химии и химических технологий, разработали ...

ОПТИМИЗАЦИЯ ТОиР НА «ТЕХНОНИКОЛЬ»

News image

Проект реализуется специалистами компании Datastream Solutions CIS и является частью собственной программы Корпорации ТехноНИКОЛЬ по внедрению конце...

Новые продукты оргсинтеза:

РЕКОНСТРУКЦИЯ в «АХЕМЕ»: опыт и результаты

News image

На прошедшей недавно международной конференции «Метанол и производные», организованной компанией Креон представители литовской фирмы Ахема поделились уникальным опытом реконструкции своего старого ...

ИМПЛАНТАТЫ С ГИДРОГЕЛЕМ КАРБОКСИМЕТИЛЦЕЛЛЮЛОЗЫ

News image

Так же силы были направлены на поиск и исследования альтернативного наполнителя, который минимизировал бы вред здоровью, а эстетический эффект был бы максимальным.

ГЛИОКСАЛЕВАЯ КИСЛОТА: свойства и применение

News image

Глиоксалевая кислота есть первый член в ряду альдегидокислот, который представляется единственной возможной α-альдегидокислотой.

Авторизация



YOU ARE HERE: Главная - Новости неорганической химии - Супрамолекулярная химия в современном состоянии

Великие химики:

КАРЛЕ (Karle), Джером

News image

Американский химик Джером Карле родился в Нью-Йорке, в семье Луиса Карле и Сэйди (Кан) Карфанкл. Он вырос в Бруклине и окончил там в 1933 г. среднюю...

ЗИГМОНДИ (Zsigmondy), Рихард Адольф

News image

Немецкий химик Рихард Адольф Зигмонди (Жигмонди) родился в Австрии, в Вене, в семье Ирмы (фон Закмари) и Адольфа Зигмонди, у которых было четверо де...

Институты химии:

Институт химии ДВО РАН

News image

Институт химии Дальневосточного отделения Российской академии наук создан 1 июля 1971 года на базе Отдела химии Дальневосточного филиала Сибирского ...

Институт нефтехимического синтеза им. А.В.Топчиева

News image

Учреждение Российской академии наук Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А.В.Топчиева РАН (ИНХС РАН) был создан в...