Современная химия




БЕТОНЫ ИЗ ФОСФОГИПСА

бетоны из фосфогипса

Имеющиеся запасы отхода фосфогипса составляют более 200 млн т. и увеличиваются ежегодно, а доля его утилизации не превышает 10 %.

Колоссальное количество фосфогипса, находящееся под открытым небом, подвергается воздействию атмосферных осадков, что позволяет ему практически беспрепятственно поступать в грунтовые воды. Водный бассейн на десятки километров в регионах подвержен губительному воздействию фосфорной, серной кислот и их солей, соединений редкоземельных металлов. Кроме того, испаряющиеся в атмосферу соединения фтора загрязняют биосферу. Объективные предпосылки для разработки эффективных решений имеются в достаточном количестве. Наиболее целесообразным решением было бы использовать фосфогипсовые отходы для изготовления стеновых камней с последующим применением при возведении жилых, гражданских и промышленных зданий.

Проводившиеся многочисленные исследования в области утилизации фосфогипсовых отходов можно условно разделить на три направления:

1. Использование фосфогипса в качестве сырья для производства гипсовых вяжущих a - и b-модификаций.
2. Производство строительных изделий из фосфогипса, минуя стадию переработки его в гипсовые вяжущие: декоративные и облицовочные плитки, стеновые блоки с использованием как различных приемов прессования, так и различных приемов физико-химической активации.
3. Применение в качестве добавки и наполнителя в смешанных вяжущих.

Большой научный интерес и практическую ценность представляют работы, проведенные в МИСИ (МГСУ), направленные на создание простой малоэнергоемкой технологии изготовления водостойких изделий на основе фосфогипса в естественном состоянии. На оптимальных составах фосфогипсовых смесей получен бетон марок 35...75, средней плотностью 1140–1350 кг/м3, с коэффициентом размягчения 0,72...0,75 и морозостойкостью F15...F35.

Существуют и другие, не менее интересные разработки в этой области, но всех их объединяет концепция использования фосфогипса в качестве наполнителя в композиционных вяжущих, в лучшем случае, в качестве двуводного сульфата кальция, частично дегидратирующегося в процессе тепловой обработки изделий.

Мы предлагаем другой подход, позволяющий рассматривать двуводный фосфогипс в качестве активного компонента системы, модифицированной комплексом химических и минеральных добавок, таких как: известь негашеная, активная минеральная добавка, глиноземистый цемент.

Исследования проводились на композициях следующих составов:

1. фосфогипс, глиноземистый цемент, известь;
2. фосфогипс, глиноземистый цемент, известь, активный кремнезем;
3. получение фосфогипсобетона на этих составах без применения тепловой обработки.

Известно, что основным продуктом гидратации глиноземистого цемента является САН10. При повышении температуры до 300С он переходит в С2АН8, а при температуре свыше 300С – в С3АН6, причем последний характеризуется пониженными вяжущими свойствами по сравнению и с С2АН8, и с САН10. Кроме того, перекристаллизация гексагональных низкоосновных гидроалюминатов кальция в стабильный кубический С3АН6 сопровождается появлением напряжений в твердеющей композиции и значительным уменьшением прочности. Процесс перекристаллизации зависит не только от температуры, но и от рН-среды: чем эти два фактора выше, тем интенсивнее протекает указанный процесс. Этим объясняются запреты на применение глиноземистого цемента при повышенных температурах, а также на получение смешанных вяжущих на основе глиноземистого цемента с добавлением извести или портландцемента (повышается щелочность среды).

Ввод в глиноземистый цемент двуводного гипса значительно ослабляет воздействие повышенных температур на его твердение. В этом случае, С3АН6, взаимодействуя с гипсовой составляющей, образует гидросульфоалюминаты кальция, способствующие росту прочности системы.

Исследования затвердевшего вяжущего, состоящего из фосфогипса, извести и глиноземистого цемента, подтвердили вышеперечисленные положения и позволили создать бетон с прочностью до 13 МПа через 28 суток твердения в нормальных условиях. Экспериментально установлено, что с увеличением температуры тепловой обработки прочность бетона растет

 


Читайте:


Добавить комментарий


Защитный код
Обновить

пластическая хирургия живота в Санкт-Петербурге.

Новинки полимеров:

АМОРТИЗИРУЮЩИЙ МАТЕРИАЛ ИЗ ПОЛИЭФИРНЫХ ВОЛОКОН

News image

Пенополиуретан широко используется благодаря его высоким амортизирующим свойствам, продолжительному сроку службы и хорошей формуемости. Но, с другой...

РАЗВИТИЕ ТЕХНОЛОГИИ ПРОИЗВОДСТВА ПОФ ПЛЕНОК

News image

Интересно отметить, что в связи с тем, что эффект «пленочной глазури» улучшает внешний вид товара и защищает от пыли, ПОФ-пленки используют для упак...

БУМАГА ВМЕСТО ХОЛОДИЛЬНИКОВ

News image

Израильские исследователи из Бар-Иланского Университета совместно с коллегами из Красноярского Института химии и химических технологий, разработали ...

ОБРАБОТКА ПОЛИМЕРА УГЛЕКИСЛЫМ ГАЗОМ

News image

Исследователи Фраунгоферовского Института Безопасности Окружающей среды и Энергетических технологий (UMSICHT) в Оберхаузене, преследуя новую идею ис...

Новые продукты оргсинтеза:

НОВАЯ ЛИНЕЙКА ЦЕФАЛОСПОРИНОВ «СИНТЕЗА»

News image

ОАО «Синтез» продолжает расширять линию инъекционных антибиотиков-цефалоспоринов и начинает выпуск новых препаратов: – антибиотика–цефалоспорина III поколения ЦЕФОПЕРУС® (международное название ...

ЦИКЛ ЛИМОННОЙ КИСЛОТЫ

News image

Цикл лимонной кислоты или цикл Кребса – широко представленный в организмах животных, растений и микробов путь окислительных превращений ди - и трикарбоновых кислот, образующихся в качестве промежуто...

ЛИМОННАЯ КИСЛОТА: свойства, применение, рынок

News image

Специалисты утверждают, что, она содержится, по крайней мере, в половине всех пищевых продуктов. Не случайно по объему производства лимонная кислота является одним из главных продуктов микробного си...

Авторизация



YOU ARE HERE: Главная - Рециклинг - БЕТОНЫ ИЗ ФОСФОГИПСА

Великие химики:

БАЙЕР (Baeyer), Адольф фон

News image

Немецкий химик Иоганн Фридрих Вильгельм Адольф фон Байер родился в Берлине. Он был старшим из пяти детей Иоганна Якоба Байера и Евгении (Хитциг) Бай...

ГАН (Hahn), Отто

News image

Немецкий химик Отто Ган родился во Франкфурте-на-Майне и был одним из трех сыновей Генриха Гана, стекольщика, и Шарлотты Гизе (в девичестве Штуцман)...

Институты химии:

Институт органической и физической химии им. А.Е. Арбузова РАН

News image

Казанская химическая школа ведет свою историю с первой половины ХIХ века. Она получила всемирное признание благодаря плеяде выдающихся химиков Казан...

Институт физической химии и электрохимии им. А.Н. Фрумкина РАН

News image

История Института начинается за много лет до его формального рождения в 1945 году, когда он получил название «Институт физической химии». Фактически...