Современная химия



Новые сведения о синтезе аммиака

новые сведения о синтезе аммиака

Ученые из Кембриджского университета работают над увеличением эффективности процесса синтеза аммиака. 3-5% природного газа в мире используется для создания искусственных удобрений, новое исследование может иметь серьезные последствия для сельскохозяйственного и энергетического секторов.

Аммиак (NH3) - является одним из наиболее важных химических веществ в современном мире, в основном, благодаря его использованию в производстве искусственных удобрений, которых производится более 100 млн. тонн в год, и которые обеспечивают продовольствием одну треть жителей Земли.

В природе, аммиак производится растениями (преимущественно бобовыми) и некоторыми бактериями, которые извлекают азот из атмосферы в процессе, известном как фиксация азота. Она происходит при комнатной температуре и нормальном давлении, но искусственная фиксация азота (по Габеру-Бошу) для производства огромных количеств аммиака, необходимого для удовлетворения глобальных запросов, требует высоких давлений (150-250 атмосфер) и высоких температур (300-550 градусов Цельсия). Как говорилось ранее, около 3-5% добычи природного газа в мире, потребляются в цикле Габера-Боша, что составляет около 1-2% от антропогенных поставок энергии в мире.

Стив Дженкинс, доктор химического факультета Кембриджского университета и один из соавторов работы, утверждает, что цикл Хабера-Боша был разработан в начале двадцатого века, и мало изменился с тех пор, очевидно, учитывая массовый масштаб мирового производства аммиака, что даже крошечные улучшения эффективности процесса его синтеза, могут иметь огромные последствия не только для экономики производства удобрений, но и для глобального спроса на энергию.

Одним из ключевых соединений, позволяющих проводить такой цикл, является железный катализатор, который стимулирует диссоциацию молекул N2, а также предоставляет платформу, на которой атомы азота последовательно гидрогенизируются с образованием NH, NH2 и, наконец, NH3. В течении десятилетий тратилось много сил для улучшения нашего понимания того, каким образом железный катализатор работает, почему добавление таких элементов как калий, улучшает его свойства, и поиск закономерностей, которые могли бы нам подсказать лучший и более эффективный катализатор.

Говорит д-р Дженкинс: Раньше, для изучения такого катализа, требовался образец монокристаллического железа высокой чистоты, и как правило, эксперименты проходили в ультра высоком вакууме (УВВ), т.е. в условиях, где давление составляет менее одной миллионной миллионной атмосферы. Мы смогли использовать некоторые из привлекательных особенностей тех испытаний в своих экспериментах, но при большем давлении .

Вначале, для создания на поверхности железного катализатора слоя из атомов азота (до плотности чуть более одного атома азота на два атома железа поверхностного слоя), ученые подвергли железный образец воздействию ионов азота. В (УВВ) условиях, возможно использовать оже-электронную спектроскопию (ОЭС) для определения количества азота на поверхности катализатора. Затем, ученые обрабатывали образец газообразным водородом (H2) при давлении до 0,6 мбар в течении нескольких минут. Это очень низкое давление по сравнению с промышленными условиями, но его достаточно для довольно быстрого протекания реакции.

Недостатком использования давления отличного от ультра высокого вакуума является то, что в таких условиях не возможно использовать оже-электронную спектроскопию во время реакции, но эту проблему можно обойти работая эпизодически. После экспозиции в несколько минут, они эвакуируют экспериментальную камеру и быстро возвращаются к глубокому вакууму оценивая количество азота на поверхности с помощью ОЭС, затем реакцию с H2 повторяют. Проделав такие изменения несколько раз, ученые могут изучить зависимость падения концентрации азота на поверхности катализатора, от времени и температуры. Такая гидрогенизация проходит с количеством азота, предварительно нанесенного на не большую поверхность, при этом ученые понимают, что они никогда не произведут достаточного количества аммиака, чем количество способное охватить небольшую часть поверхности катализатора при температуре и давлении реакции, участвующие в работе, но при этом, они знают, что эксперимент моделирует одну из ступенек промышленного цикла, которая определяет общую скорость процесса.

Профессор химического факультета Кембриджского университета сэр Дэвид Кинг, говорит: Интересно, что благодаря данным полученным в экспериментах мы обнаружили, что реакция ускоряется на 20%, если добавить немного калия на поверхность. Такой же результат наблюдается и в цикле Габера-Боша в условиях минимального производства аммиака, когда определяющей стадией является диссоциация N2. Но результаты также позволяют предположить, что в определенных условиях, а именно, когда давление аммиака поддерживается на низком уровне, стадия гидрирования (от N к NH к NH2 к NH3) может, на самом деле, быть самой важной. Стоит сказать о еще одном важном аспекте текущей работы, который состоит в том, что работа с железом заключает в себе большие трудности по сравнению с другими металлами, используемыми в катализе, такими как платина, медь, никель. Железо чрезвычайно склонно к высоким содержаниям примесей, которые могут мешать протеканию реакции уменьшая катализирующие свойства металла.

Ранее были необходимы месяцы усилий для очистки образца, с помощью водорода, распыления ионов аргона, отжига, и очистки кислородом. Кроме того, предыдущая работа с железным монокристаллом в условиях ультравысокого вакуума (работа Герхарда Эртлья) требовало насыщать приповерхностную область материала азотом, для предотвращения диффузии азота в объем. Работая с более высоким давлением водорода, мы можем оперировать более низкими температурами, препятствуя появлению многих проблем ,- говорят исследователи.

 


Читайте:


Добавить комментарий


Защитный код
Обновить

Новинки полимеров:

КОМПОЗИТНЫЕ МАТЕРИАЛЫ В ГОРНОЙ ДОБЫЧЕ

News image

Руда добывается либо подземной проходкой выработки по породе, либо же снятием слоя за слоем почвы и прохождением сквозь горные породы с помощью техн...

НОВЫЕ РАЗРАБОТКИ LANXESS в области БУТИЛОВЫХ КАУЧУКОВ

News image

Более 80 процентов синтетического каучука из группы бутиловых каучуков, производимого во всем мире, используется в производстве автомобильных шин. Б...

ПРОБЛЕМЫ ВНЕДРЕНИЯ НАНОКОМПОЗИТОВ

News image

- повышенная химическая стойкость в различных промышленных средах; - улучшенные физико-механические характеристики для ответственных узлов машин и м...

Новый способ отбелки зубной эмали

News image

Учёные-химики из КНР использовали комбинацию полиакриламида, полиэтиленоксида и фторапатита с целью получения пленки, способной вернуть зубам белы...

Новые продукты оргсинтеза:

ИСПОЛЬЗОВАНИЕ ЛУЗГИ РИСА В ПРОИЗВОДСТВЕ КРЕМНИЯ

News image

Несмотря на то, что кремний использовался первобытным человеком ещё 600 тысяч лет назад в виде каменных орудий труда, возможности этого элемента и его соединений раскрывались в течение столетий чрез...

ЖИДКОСТИ GLYSANTIN®: защита от BASF

News image

Замерзающие стекла автомобилей напоминают нам о наступлении самого холодного времени года. Эксплуатация транспортных средств при низких температурах воздуха предъявляет повышенные требования к охлаж...

ГИАЛУРОНОВАЯ КИСЛОТА: история применения

News image

Гиалуроновая кислота лежит в основе многих препаратов, применяемых в косметологии для устранения морщин и увеличения объема губ

Авторизация



YOU ARE HERE: Главная - Новости неорганической химии - Новые сведения о синтезе аммиака

Великие химики:

ОНЗАГЕР (Onsager), Ларс

News image

Норвежско-американский химик Ларс Онзагер родился в Осло, в семье Эрлинга Онзагера, адвоката Верховного суда Норвегии, и Ингрид (Киркеби) Онзагер. П...

СВЕДБЕРГ (Svedberg), Теодор

News image

Шведский химик Теодор Сведберг родился в имении Флеранг, неподалеку от г. Гавле. Он был единственным ребенком Элиаса Сведберга, инженера и управляющ...

Институты химии:

Институт высокотемпературной электрохимии УрО РАН

News image

Институт высокотемпературной электрохимии (ИВТЭ) был основан в конце 1957 г. на базе лаборатории электрохимии расплавленных солей Уральского филиала...

Институт химии силикатов РАН

News image

Ордена Трудового Красного Знамени Институт химии силикатов имени И.В. Гребенщикова Российской академии наук создан в марте 1948 года. Институт являе...