Современная химия




БУДУЩЕЕ ЗА ЦЕЛЛЮЛОЗНЫМ ЭТАНОЛОМ

будущее за целлюлозным этанолом

Раз, два, три, четыре - и мы заправляем наши автомобили травой с лужаек и древесной стружкой вместо импортной нефти. Однако не все так просто. Ученым давно известно, как перерабатывать деревья в этанол, но делать это, получая прибыль - совсем другое дело. Мы можем заправлять автомобили травой с лужаек, но не делаем этого из-за отсутствия цены, приемлемой для людей. Вся проблема - в целлюлозе...

Это самая распространенная органическая молекула на планете, потенциально неограниченный источник энергии. Но эту молекулу сложно разбить на составляющие.

Ученые во многих странах мира сейчас усиленно работают над поиском самого эффективного способа расщепления целлюлозы, и, как следствие, получением более продуктивного и экономичного источника топлива и энергии.

Эволюция позволила животным делать это без проблем: у коров, коз и оленей есть особый желудок, где обитают микроорганизмы, переваривающие эту молекулу; у термитов в пищеварительных каналах есть сотни микроорганизмов, которые помогают ее перерабатывать.

Пока ученые бьются над снижением стоимости альтернативных энергетических ресурсов, политики за последние 2 года сошлись на том, что следует поставить нефть на задний план.

Для этого много причин – цель по сокращению нашей зависимости от нестабильных нефтяных регионов, парниковых газов и нормализация цен на нефть. Очевидно, что США хочет заменить 1 млрд. галлонов бензина альтернативным топливом и то побыстрее.

Даже ветеран нефтяной индустрии Джордж Буш признал, что «Америка имеет зависимость от нефти» и установил цель по замене 20% (35 млрд. галлонов) ежегодного потребления бензина страной возобновляемым топливом к 2017 году.

Но как? Водород пока далек от реальности, заправлять автомобили электричеством, генерированным ветром или солнцем - сложная задача. Остается лишь этанол.

На сегодня мы производим его из зерен кукурузы, потому что это легче сделать, чем получить целлюлозный этанол. Но в лучшем случае он производит на 30% больше энергии, чем потребовалось для выращивания и обработки кукурузы.

Кроме этого, удобрения для сырья и интенсивное культивирование загрязняют водные ресурсы, а растущий спрос поднимает цены на продовольствие. По подсчетам, этанол из кукурузы сможет произвести только 15 млрд. галлонов топлива к 2017 году.

Целлюлозный этанол, в теории, намного лучшая ставка. Растения, пригодные для производства этанола такого рода - это просо прутьевидное, быстрорастущее растение, произрастающее на плато Великие Равнины (США и Канада) и тополя, непригодные для продовольствия.

И, согласно совместному исследованию Департамента энергетики и сельского хозяйства США, мы можем выращивать более 1 млрд. тонн такой биомассы на доступной сельскохозяйственной земле, используя минимальное количество удобрений.

Фактически, около 2/3 того, что мы выбрасываем в мусор, содержит целлюлозу, а значит и потенциальное топливо. Целлюлозный этанол производит на 80% больше энергии, чем необходимо для ее выращивания и преобразования.

Поэтому волна общественного и частного финансирования выливается в исследовательские лаборатории. Рискованные капиталисты инвестируют сотни миллионов долларов в разработку технологии целлюлозы. Бритиш Петролеум выделяет $500 млн для Института по бионаукам, которым управляет Университет Иллинойса и Беркли.

Департамент энергетики обязался выделить $385 млн 6 компаниям, которые строят целлюлозные демонстрационные заводы. В июне Департамент энергетики выделило $125 3-м биоэнергетическим центрам на исследование целлюлозного биотоплива.

Но есть одна зацепка: никто еще не выяснил, как генерировать энергию из растений по конкурентоспособной цене. Поэтому на дорогах еще нет ни одного автомобиля, который бы использовал хоть каплю целлюлозного этанола.

Целлюлоза по своему строению - прочная молекула. И это связано с тем, что 400 млн. лет назад, когда растения вышли на сушу из воды им нужны были крепкие стенки, чтобы защитить себя от микробов, элементов и животных. Чтобы пробить эту броню, необходимо обработать стенки растений химическими веществами.

 

 


Читайте:


Добавить комментарий


Защитный код
Обновить

Новинки полимеров:

ОПТИМИЗАЦИЯ ТОиР НА «ТЕХНОНИКОЛЬ»

News image

Проект реализуется специалистами компании Datastream Solutions CIS и является частью собственной программы Корпорации ТехноНИКОЛЬ по внедрению конце...

РАЗВИТИЕ ТЕХНОЛОГИИ ПРОИЗВОДСТВА ПОФ ПЛЕНОК

News image

Интересно отметить, что в связи с тем, что эффект «пленочной глазури» улучшает внешний вид товара и защищает от пыли, ПОФ-пленки используют для упак...

ЛЕГКОФОРМУЕМЫЕ ПОЛИЛАКТИДЫ

News image

Данный компаунд позволяет обеспечить значительное сокращение продолжительности цикла литья (примерно наполовину) по сравнению с обычными полилактидн...

НОВЫЙ ШАГ В ПОЛУЧЕНИИ БИОПОЛИМЕРОВ

News image

Преобразовать все основные виды сахара, содержащиеся в овощах, фруктах и садовых отходах, в высококачественную экологичную продукцию, например в био...

Новые продукты оргсинтеза:

ПИЩЕВЫЕ ПОЛИОЛЫ: виды, свойства, применение

News image

В последнее время - путем полной или частичной гидрогенизации продуктов с использованием высокомальтозной патоки.

ОТЕЧЕСТВЕННЫЕ ФАРМИННОВАЦИИ

News image

Лабораторная технология получения наноразмерных противоопухолевых лекарственных средств разработана в Российском онкологическом научном центре им. Н.Н. Блохина РАМН

ПИЩЕВЫЕ КРАСИТЕЛИ ОТЕЧЕСТВЕННЫХ ПРОИЗВОДИТЕЛЕЙ

News image

Всего в России производством пищевых красителей занимаются 5 предприятий. Это – ЭкоКолор, Гиород, Экоресурс, Тереза-Интер, Биолайн.

Авторизация



YOU ARE HERE: Главная - Альтернативное топливо - БУДУЩЕЕ ЗА ЦЕЛЛЮЛОЗНЫМ ЭТАНОЛОМ

Великие химики:

КАРЛЕ (Karle), Джером

News image

Американский химик Джером Карле родился в Нью-Йорке, в семье Луиса Карле и Сэйди (Кан) Карфанкл. Он вырос в Бруклине и окончил там в 1933 г. среднюю...

КЕКУЛЕ (Kekule), Фридрих Август

News image

Немецкий химик Фридрих Август Кекуле фон Штрадониц родился в Дармштадте в семье чиновника. В юности Кекуле собирался стать архитектором. Он начал из...

Институты химии:

Институт химии силикатов РАН

News image

Ордена Трудового Красного Знамени Институт химии силикатов имени И.В. Гребенщикова Российской академии наук создан в марте 1948 года. Институт являе...

Институт неорганической химии им. А.В. Николаева СО РАН

News image

Институт неорганической химии им. А.В. Николаева СО РАН организован в 1957 году в соответствии с Постановлением АН СССР № 607 от 09