Россия является одним из крупнейших мировых производителей водорода и установок для его получения, причем доля газа, производимого методом щелочного электролиза, составляет около 10 % от общего количества и постоянно растет. Среди потребителей наиболее чистого водорода, полученного методом щелочного электролиза воды, можно назвать предприятия пищевой, стекольной, электронной промышленности, металлургии и энергетики.
На данный момент, единственным крупным производителем щелочных электролизеров в России является ОАО «Уралхиммаш». Продукция данного предприятия отличается простотой эксплуатации и относительно низкой (по мировым меркам) стоимостью. Однако основные узлы электролизеров ОАО «Уралхиммаш» были разработаны еще в 50-х годах. Это обусловливает ряд серьезных недостатков, таких как большая металлоемкость, наличие асбестовой диафрагмы, отсутствие каких-либо каталитических покрытий электродов, и, как следствие, высокое энергопотребление установок, 5,2-5,5 кВт∙ч/нм3 H2 (при плотности тока 300 мА/см2). Некоторое время назад, благодаря относительно низким тарифам на электроэнергию, была экономически оправдана эксплуатация сравнительно дешевых электролизеров с невысоким КПД. В настоящее время при росте тарифов на электрическую энергию затраты на производство водорода становятся все более ощутимыми. В свою очередь, начиная с 70-х годов, за рубежом проводились активные научные и технологические разработки в области щелочного электролиза, что привело к возникновению ряда фирм, производящих электролизеры нового поколения, отличающихся сравнительно низкой металлоемкостью и, главное, энергопотреблением, выполненных с применением современных полимерных конструкционных материалов, полимерных мембран, высокоэффективных недорогих каталитических покрытий электродов. Последние пять лет отмечены высокой и зачастую агрессивной политикой зарубежных фирм на российском рынке, вследствие чего наша страна из страны-экспортера постепенно превращается в импортера щелочных электролизеров.
В сложившихся условиях возникает острая необходимость активизации собственных научно-технических усилий по созданию конкурентоспособного высокоэффективного отечественного электролизера, отвечающего современным стандартам зарубежных производителей [1,2].
За прошедшие со времени проведения предыдущего симпозиума 2 года [3] была выполнена следующая работа.
Создана новая система управления электролизеров типа СЭУ, которая включает в себя контроллер автоматики Малахит 32П со следующими основными функциями:
-сбор данных с датчиков;
-индикация данных на мнемосхеме в цифровом виде;
-контроль параметров с генерацией соответствующих событий;
-звуковая и световая индикация, при возникновении предупредительных и предаварийных ситуаций;
-индикация событий на мнемосхеме и в бегущей строке;
-изменение режимов ведения технологического процесса (напряжения, тока);
-выключение тиристорных преобразователей, при возникновении предаварийных ситуаций;
-сохранение текущих событий, до сброса их оператором;
-настройка порогов срабатывания предупредительных и предаварийных ситуаций;
-тарирование датчиков;
-архивирование данных на контроллере с отображением архива в виде диаграмм;
-архивирование событий на контроллере с отображением архива в виде таблицы;
-передача данных и событий в программу верхнего уровня;
-настройка выдержек срабатывания по предупредительным и предаварийным ситуациям;
-переход из режима «сигнализация и защита» в режим «сигнализация» и обратно.
Контроллер отражает следующие основные параметры:
* Контроль работы тиристорных преобразователей
* Значение тока и напряжения у каждого электролизера
* Давление вытесняющего газа мало
* Показания температур электролита, водорода и кислорода
* Концентрация водорода в кислороде и кислорода в водороде
* Концентрация водорода в воздухе помещения электролизной
* Давление водорода в регуляторах-промывателях и ресиверах
* Перепад давления в регуляторах-промывателях
* Индикация состояния защиты электролизера по минимальному напряжению
* Индикация режима защиты.
Разработана электролизная батарея с нулевым зазором, а также компактная установка на ее основе производительностью 10 нм3/час, имеющая улучшенные в 2-3 раза весогабаритные характеристики по сравнению с существующими установками СЭУ - 10.
Исследованы некоторые ароматические полимеры (например, полисульфон), наполненные неорганическим оксидом (Sb2O5, MgO, TiO2 и др), улучшающим проводимость и смачиваемость разделительной мембраны. Наиболее универсальным методом изготовления мембраны является метод «мокрого формования» [4]. В результате разработаны первые образцы полимерных безасбестовых пористых диафрагм и мембран для электролизеров с «зазором» и «нулевым зазором». Мембраны для электролизеров с «зазором» в настоящее время проходят промышленные испытания.
Следующим этапом данных работ является создание эффективных и недорогих каталитических покрытий катодов и анодов для щелочного электролиза. На данный момент имеется достаточное количество отечественных и зарубежных разработок высокоэффективных катализаторов электродных процессов, однако, лишь небольшая часть из них может быть применена в реальных промышленных условиях крупномасштабного производства. При проведении данных исследований особое внимание должно быть уделено каталитическим покрытиям с высокой активностью и устойчивостью, низкой стоимостью, причем технология нанесения покрытий должна быть достаточно простой и недорогой.
При анодном выделении кислорода на электроде наблюдается значительная поляризация, связанная как с замедленностью собственно электрохимического процесса, так и с образованием оксидных пленок с пониженной электронной проводимостью. Более ранние исследования различных модификаций никеля (никелевых электродов ренеевского типа, электрокатализаторов на основе шпинелей и перовскитов) выявили достаточно высокую активность подобных систем, сопряженную, однако, с рядом серьезных недостатков, таких как технологическая сложность изготовления и/или низкая стабильность каталитических покрытий во времени.
В данной работе был исследован метод получения композиционных никелевых покрытий, модифицированных никель-кобальтовой шпинелью (NiCo2O4). Основными преимуществами метода является технологическая простота исполнения, высокая каталитическая активность и устойчивость покрытий.
Модифицирование поверхности композиционного электрода никель-кобальтовой шпинелью проводили методом термического разложения соответствующих нитратов никеля и кобальта [5], [6].
Для нанесения композиционного слоя никеля на поверхность катодов применялась та же технология, которая применялась для изготовления анодов. Модифицирование поверхности проводили химическим осаждением никеля раствором гипофосфита натрия [5], [7], поскольку известно, что в данном случае происходит со-осаждение никеля и фосфора, причем содержание фосфора может достигать 15 %.