Однако тот факт, что они имеют сильно отличающиеся свойства от других насыпных материалов, часто игнорируется. Это приводит к тому, что многие операторы на заводах находятся в поисках эффективной и надежной системы инжектирования. Инжекторные конвейеры, продувочные башмаки и продувочные питатели разных типов используются для вбрасывания вторичного топлива на пневматическую конвейерную установку. Однако практика применения этих систем показала, что взятые по отдельности они только ограниченно пригодны для работы с вторичными видами топлива.
Поэтому было очевидно, что необходимо двигаться вперед. Компания Di Matteo Foerderanlagen GmbH - Co. KG поставила цель разработать новое инжекторное оборудование. Техническое решение проблемы состояло в постоянной модернизации на основе наработанного практического опыта и переходе к третьему поколению питателей. В инжекторном роторном питателе ODM IZS® (рис. 1) технология роторных питателей, обновленная компанией Di Matteo, соединена с часто предъявляемыми требованиями к надежной загрузке пневматической конвейерной системы сложными сыпучими материалами: вторичным топливом, осадками сточных вод, вторичной пылью или гашеной известью. Сочетание модифицированного роторного питателя с инжектором обеспечивает эффективную подачу вторичных видов топлива и других сыпучих материалов. Инжектор является интегральной частью роторного питателя. На инжекторный роторный питатель ODM были получены авторские права [1].
Утечки воздуха могут быть минимизированы, а транспортирующий воздух полностью использован для пневматической транспортировки путем тщательно контролируемого инжектирования транспортирующего воздуха с высокой скоростью через инжектор параллельно оси ячейкового ротора. Поведение такой комбинации было предварительно исследовано в лабораторных условиях на моделях и промышленном инжекторном роторном питателе IZS®. Несколько примеров из этих результатов показано на рис. 2. На этой диаграмме статическое давление Pстат представлено как функция от расстояния x от ввода транспортирующего воздуха в камеру роторного питателя.
Из этой диаграммы видно, что в случае «традиционного» продувного роторного питателя, т. е. питателя без сопла, всегда создается положительное статическое давление, которое является причиной больших утечек воздуха в роторных питателях. Негативное статическое давление, которое на практике почти полностью подавляет утечки воздуха, образуется у стенки над всей длиной ячейки путем оптимизации формы впускного сопла для воздуха. Это может предотвратить проблемы с подачей легкого вторичного топлива.
При подаче на ячеистый ротор частицы топлива отбрасываются назад воздухом утечки в направлении оси питателя. Это приводит к блокированию и разделению материала. Внутреннее давление, препятствующее подаче материала в питатель, варьируется в зависимости от количества транспортируемого материала и расстояния транспортировки. Однако при реализации нового принципа такого не происходит. Отрицательное статическое давление предотвращает обратный выдув транспортируемого материала. Такой подход успешно оправдал себя в промышленном применении. В зависимости от конструкции установки отрицательное давление означает, что входной патрубок подачи материала нового инжекторного роторного питателя может открываться в течение рабочего цикла без риска потери материала.