Современная химия




ОБЗОР ТЕХНОЛОГИЙ ПРОИЗВОДСТВА ГЛИЦЕРИНА

обзор технологий производства глицерина

Глицерин является растворителем веществ неорганического происхожде-ния: едкого калия или натрия, хлорида натрия, сульфата и гидроксида кальция, солей ряда тяжелых металлов.

Водные растворы глицерина при охлаждении замерзают при температуре ниже нуля. Раствор, состоящий из 66,7% глицерина, замерзает при температуре (-46,5)°С, что используется для приготовления антифризов.

Глицерин является одним из главных продуктов метаболизма липидов в живом организме и принимает непосредственное участие в протекании важнейших биохимических процессов. Установлено, что производное глицерина - эпихлоргидрин используется клетками микроорганизмов в качестве ростового субстрата. Найдены различные штаммы, осуществляющие конверсию эпихлоргид-рина с большей скоростью, чем протекание его гидролиза под действием химических реагентов.

Большое значение имеет глицерин и его производные для создания эффек-тивных лекарственных препаратов и других биологически активных соединений. Глицерин используется в качестве необходимого компонента при изготовлении противоинфекционных мазей, гелей, кремов, аэрозолей для предотвращения интоксикаций, вызываемых укусами насекомых или ядовитыми растениями, лечения аллергических дерматитов, трихофитии и т.д., а также антисептических составов, не раздражающих кожу и обладающих высокой бактерицидной активностью. Выявленная росторегулирующая активность производных глицерина определяет их перспективу использования в сельском хозяйстве.

Большую перспективу имеют ненасыщенные эфиры глицерина в качестве мономеров для создания новых полимерных материалов. Для изготовления линз, призм и основ оптических дисков используют композиции с повышенной термостойкостью, в состав которых в качестве ингредиента входят насыщенные или ненасыщенные эфиры глицерина.

Неполные эфиры олигоглицеринов и жирных кислот нашли применение в качестве диспергаторов пигментов в производстве лакокрасочных материалов. В Индии, например, планируется получение ряда технически важных продуктов (ПАВ, присадки к смазкам, пластификаторы и стабилизаторы к полимерным материалам и др.) с использованием продуктов переработки жиров и масел, в том числе глицерина.

Следует отметить, что синтетические возможности глицерина и его производных практически неисчерпаемы, и их использование приведет к получению веществ с практически ценным комплексом свойств. До разработки синтетических методов получения этот триол получали омылением жиров и масел. И в настоящее время во многих развитых странах мира (США, Япония и др.) основную долю производимого глицерина составляет продукт, получаемый из природного сырья, несмотря на то, что на выработку 1 т глицерина расходуется 10-12 т жира. Производство глицерина из натурального сырья основано на совместном получении его с жирными кислотами или продуктами восстановления последних - спиртами. Однако потребление их растет менее динамично, чем потребление глицерина.

Для удовлетворения растущей потребности были начаты интенсивные поиски путей получения синтетического глицерина. Первые попытки получения глицерина с использованием гидролиза 1,2,3-трихлорпропана не давали желаемого результата, так как получение самого исходного продукта было связано с определенными трудностями из-за невысокой избирательности процесса. Гидролиз симм.- 1,2,3-трихлорпропана приводил к образованию в качестве основного продукта 2,3-дихлорпропена.

В 1938 г. американский исследователь Э. Вильяме предложил оригиналь-ный способ получения хлористого аллила, основанный на высокотемпературном заместительном хлорировании пропилена с сохранением двойной связи. Первая промышленная установка по синтезу глицерина с использованием реакции Вильямса была пущена в США в 1948 г. Процесс состоял в первоначальном получении аллилхлорида из пропилена, перевода его путем гипохлорирования в дихлоргидрин глицерина и дегидрохло-рирования последнего с образованием эпихлоргидрина. Гидролиз последнего приводил к получению глицерина. Этот метод получения синтетического глицерина, так называемый «хлорный», получил затем большое распространение и в других странах, в том числе в бывшем СССР.

Несмотря на то, что в настоящее время разработан ряд методов получения глицерина без использования хлора, данный способ синтеза остается доминирующим. Это объясняется масштабами использования промежуточного продукта этого процесса - эпихлоргидрина в органическом синтезе и в получении новых лекарственных средств, а также в производстве эпоксидных смол.

К моменту начала проектирования в промышленных масштабах получали глицерин с применением хлора и без него. Хлорный метод производства глицерина заключался в хлорировании пропилена до хлористого аллила, гипохлорировании последнего до дихлоргидри-нов, омыляемых затем в эпихлоргидрин, который в свою очередь омылялся до глицерина.

В этом процессе, как и во всех процессах замещенного хлорирования, выделяется значительное количество хлористого водорода из-за низкой селективности основных реакций, и образуются значительные количества кубовых остатков и побочных продуктов, требующих специальной переработки или уничтожения.

Существенным недостатком хлорного синтеза глицерина является также наличие стоков, загрязненных хлоридами кальция и натрия, а также необходимость применения коррозионно-устойчивой аппаратуры из дорогостоящих металлов и сплавов вследствие агрессивности реакционных сред некоторых стадий.

Основным достоинством хлорного метода является возможность одновременного получения эпихлоргидрина, требующегося в достаточно больших количествах в производстве эпоксидных смол. К бесхлорным методам получения глицерина относятся окислительный метод через акролеин и способ, основанный, на изомеризации хлорной окиси пропилена. В мировой практике того времени прямая окись пропилена не выпускалась, и производство глицерина было ориентировано на хлорную окись пропилена (полухлорный метод).

 


Читайте:


Добавить комментарий


Защитный код
Обновить

Прекрасное сочетание качества и цены - Molecule 01 escentric molecules - доступные цены!

Новинки полимеров:

НОВЫЙ ШАГ В ПОЛУЧЕНИИ БИОПОЛИМЕРОВ

News image

Преобразовать все основные виды сахара, содержащиеся в овощах, фруктах и садовых отходах, в высококачественную экологичную продукцию, например в био...

ЛЕГКОФОРМУЕМЫЕ ПОЛИЛАКТИДЫ

News image

Данный компаунд позволяет обеспечить значительное сокращение продолжительности цикла литья (примерно наполовину) по сравнению с обычными полилактидн...

О ХОДЕ РЕКОНСТРУКЦИИ ЭП-300 НА «СИБУР-НЕФТЕХИМ»

News image

Весь дополнительный этилен, который будет получен на установке после реконструкции, будет направлен на проектируемый комплекс по производству ПВХ ОО...

НОВИНКИ TEIJIN ДЛЯ АВИАКОСМИЧЕСКОЙ ОТРАСЛИ

News image

Тохо Тенакс начала поставки углеродного волокна для авиастроения в середине 80-х годов прошлого века и сейчас обеспечивает различными передовыми мат...

Новые продукты оргсинтеза:

ИОНЫ СКУЛАЧЕВА

News image

С 2005 г. в России в стенах Московского государственного университета им. М.В

НОВЫЕ ВИДЫ ПОВЕРХНОСТНО-АКТИВНЫХ ВЕЩЕСТВ

News image

На практике традиционные поверхностно-активные вещества обычно включают в себя гидрофобную цепь, прикрепленную к сравнительно компактной полярной или гидрофильной головке. Варьируя молекулярный вес ...

ПИЩЕВЫЕ ПОЛИОЛЫ: виды, свойства, применение

News image

В последнее время - путем полной или частичной гидрогенизации продуктов с использованием высокомальтозной патоки. Использование сахарных спиртов в качестве подслащивающих средств не требует для и...

Авторизация



YOU ARE HERE: Главная - Новости базовой химии - ОБЗОР ТЕХНОЛОГИЙ ПРОИЗВОДСТВА ГЛИЦЕРИНА

Великие химики:

ВИНДАУС (Windaus), Адольф Отто Рейнгольд

News image

Немецкий химик Адольф Отто Рейнгольд Виндаус родился в Берлине. Его отец, Адольф Виндаус, происходил из семьи текстильных фабрикантов, а мать, Марга...

ЖОЛИО-КЮРИ (Joliot-Curie), Ирен

News image

Французский физик Ирен Жолио-Кюри родилась в Париже. Она была старшей из двух дочерей Пьера Кюри и Марии Склодовской-Кюри. Мари Кюри впервые получил...

Институты химии:

Новосибирский институт органической химии (НИОХ)

News image

Новосибирский институт органической химии (НИОХ) был создан 27 июня 1958 года в составе Сибирского отделения Академии наук СССР согласно постановлен...

Иркутский институт химии им. А.Е. Фаворского СО РАН

News image

Иркутский институт химии СО РАН находится в ряду крупнейших в России центров фундаментальных исследований в области органической и элементоорганичес...