Современная химия




Электролиз

электролиз

Совокупность ОВР , которые протекают на электродах в растворах или расплавах электролитов при пропускании через них электрического тока, называют электролизом.

На катоде источника тока происходит процесс передачи электронов катионам из раствора или расплава, поэтому катод является «восстановителем». На аноде происходит отдача электронов анионами, поэтому анод является «окислителем».

При электролизе как на аноде, так и на катоде могут происходить конкурирующие процессы.

При проведении электролиза с использованием инертного (нерасходуемого) анода (например, графита или платины), как правило, конкурирующими являются два окислительных и восстановительных процесса:

на аноде — окисление анионов и гидроксид-ионов, на катоде — восстановление катионов и ионов водорода.

При проведении электролиза с использованием активного (расходуемого) анода процесс усложняется и конкурирующими
реакциями на электродах являются следующие:

на аноде — окисление анионов и гидроксид-ионов, анодное растворение металла — материала анода;

на катоде — восстановление катиона соли и ионов водорода, восстановление катионов металла, полученных при растворении
анода.

При выборе наиболее вероятного процесса на аноде и катоде исходят из положения, что протекает та реакция, которая требует наименьшей затраты энергии. При электролизе растворов солей с инертным электродом используют следующие правила.

1. На аноде могут образовываться следующие продукты:

а) при электролизе растворов, содержащих анионы F-, SО42 - , NO3-, РO43-, ОН - выделяется кислород;

б) при окислении галогенид-ионов выделяются свободные галогены ;

в) при окислении анионов органических кислот происходит процесс:

2RCOO - - 2е → R-R + 2СО2.

2. При электролизе растворов солей , содержащих ионы , расположенные в ряду напряжений левее Аl3+, на катоде выделяется водород; если ион расположен правее водорода, то выделяется металл.

3. При электролизе растворов солей, содержащих ионы, расположенные между Аl3+ и Н+ на катоде могут протекать конкурирующие процессы как восстановления катионов, так и выделения водорода.

Рассмотрим в качестве примера электролиз водного раствора хлорида меди на инертных электродах. В растворе находятся ионы Cu2+ и Cl-, которые под действием электрического тока направляются к соответствующим электродам:

<>

CuCl2

(-) Катод ← Cu2+

+

2Cl - → Анод (+)

Cu2+ + 2e = Cu0

2Cl - - 2e = Cl2

На катоде выделяется металлическая медь , на аноде — газообразный хлор.

Если в рассмотренном примере электролиза раствора СuCl2 в качестве анода взять медную пластинку, то на катоде выделяется медь, а на аноде, где происходят процессы окисления, вместо разрядки ионов Сl и выделения хлора протекает окисление анода (меди). В этом случае происходит растворение самого анода, и в виде ионов Сu2+ он переходит в раствор. Электролиз СuCl2 с растворимым анодом можно записать так:

CuCl2

(-) Катод ← Cu2+

+

2Cl - → Анод (+)

Cu2+ + 2e = Cu0

2Cu - - 2e = Cu2+

Таким образом, электролиз растворов солей с растворимым анодом сводится к окислению материала анода (его растворению) и сопровождается переносом металла с анода на катод. Это свой­ство широко используется при рафинировании (очистке) металлов от загрязнений.

Для получения высокоактивных металлов (калия, алюминия и др.), легко вступающих во взаимодействие с водой, применяют электролиз расплава солей или оксидов, например

<>

Al2O3

расплав

(-) катод ← 2Al3+

+

2Cl - → анод (+) (С – графит)

2Al3+ + 6e = 2Al0

3O2 - - 6e = 3/2O2

2C + O2 = 2CO

2CO + O2 = 2CO2

При электролизе водного раствора соли активного металла кислородсодержащей кислоты (например, КNО3) ни катионы металла, ни ионы кислотного остатка не разряжаются. На катоде выделяется водород, а на аноде — кислород, и электролиз раствора нитрата калия сводится к электролитическому разложению воды.

Отметим, что электролиз растворов электролитов проводить энергетически выгоднее, чем расплавов, так как электролиты плавятся при очень высоких температурах.

Зависимость количества вещества, образовавшегося при электролизе, от времени и силы тока описывается обобщенным законом Фарадея:

m = (Э / F) • I • t = (М / (n • F)) • I • t,

где m — масса образовавшегося при электролизе вещества (г); Э — эквивалентная масса вещества (г/моль); М — молярная масса вещества (г/моль); n — количество отдаваемых или принимаем электронов; I — сила тока (А); t — продолжительность процесса (с); F — константа Фарадея, характеризующая количество электричества, необходимое для выделения 1 эквивалентной массы вещества (F= 96500 Кл/ моль = 26,8 А• ч / моль).

 


Читайте:


Добавить комментарий


Защитный код
Обновить

Регистрация предприятий новокосино полный перечень управляющих тсж в регионе новокосино.

Новинки полимеров:

ПЕНОПОЛИСТИРОЛ В НАВЕСНЫХ ВЕНТИЛИРУЕМЫХ ФАСАДАХ

News image

Это относится как к реконструкционным работам, так и к новому строительству. Многоквартирный жилой дом, сооруженный в 50-х годах прошлого века, и со...

«ТНК АЛЬФАБИТ»: ТНК представила ПБВ

News image

При соблюдении технологии укладки битум позволяет увеличить гарантированный срок службы дороги с 2-3 до 7-10 лет по сравнению с обычными битумами бе...

РАЗВИТИЕ ТЕХНОЛОГИИ ПРОИЗВОДСТВА ПОФ ПЛЕНОК

News image

Интересно отметить, что в связи с тем, что эффект «пленочной глазури» улучшает внешний вид товара и защищает от пыли, ПОФ-пленки используют для упак...

НОВЫЕ АНТИПРИГАРНЫЕ ПОКРЫТИЯ TEFLON

News image

Покрытия, в основу которых положена запатентованная технология, первыми в своей отрасли получили допуск к контакту с пищевыми продуктами. Производит...

Новые продукты оргсинтеза:

НОВЫЕ ИНГИБИТОРЫ КОРРОЗИИ «КАЗАНЬОРГСИНТЕЗ»

News image

В августе 2010-го года в цехе 41-52 впервые в России и во всем СНГ для ОАО «Татнефть» была получена первая опытная партия нового продукта «ДОЭЭДА-70» (диоксиэтилэтилендиамина), применяемого для очис...

РЕШЕНИЯ BASF ДЛЯ ПРОИЗВОДИТЕЛЕЙ ПИВА

News image

Компания BASF представила разработки в технологических вспомогательных средств для фильтрации, используемых в производстве пива, на выставке Brau Beviale (г. Нюрнберг, Германия) Потребители при...

ПИГМЕНТНЫЕ ПАСТЫ ДЛЯ КОЛЕРОВКИ ЛКМ

News image

Практика колеровки не ограничивается только лакокрасочной промышленностью, эту технологию используют в других областях, например текстильной и кожевенной промышленности, производстве печатных красок...

Авторизация



YOU ARE HERE: Главная - Теоретические основы химии - Электролиз

Великие химики:

ГЛАУБЕР (Glauber) Иоганн Рудольф

News image

Немецкий алхимик и врач Иоганн Рудольф Глаубер родился в Карлштадте в Нижней Франконии (Германия), в семье цирюльника; о его жизни до 1644 г. почти ...

ВИСЛИЦЕНУС (Wislicenus), Иоганн Адольф

News image

Немецкий химик Иоганн Адольф Вислиценус родился в Клейнехштедте, близ Галле, в семье известного протестантского пастора и богослова Густава-Адольфа ...

Институты химии:

Институт физиологически активных веществ РАН

News image

Институт физиологически активных веществ РАН в составе Ногинского научного центра РАН в г. Черноголовка был создан в соответствии с решением директи...

Об Институте биоорганической химии

News image

Учреждение Российской академии наук Институт биоорганической химии РАН был основан в 1959 году и первоначально назывался Институтом химии природных ...