Современная химия




Гелевые электроды для биологии и медицины

гелевые электроды для биологии и медицины

Исследователи из Японии разработали органические гибкие и влажные электроды. Новые биосовместимые электроды состоят из токопроводящих полимеров, пронизывающих гидрогель; электроды способны работать при высокой влажности до месяца, что дает возможность применять их в биологических и медицинских исследованиях.

Производство дешевых и эффективных электродов, способных работать в биологических системах, критически важно для разработки имплантируемых медицинских устройств или для слежения за активности клеток. Для получения таких электродов потенциально могут применяться токопроводящие полимеры, как, например, поли-3,4-этилендиокситиофен [ - poly(3,4-ethylenedioxythiophene) – PEDOT], однако до настоящего времени их было практически невозможно закрепить на подходящих субстратах-носителях.

В настоящее время проводящие полимеры наносят на поверхность с помощью печати «чернилами» из жидкого полимера, эти «чернила» должны просохнуть, но этот процесс невозможен на влажных поверхностях, в том числе – и гидрогелях. Для решения этой проблемы Мацухико Нисизава (Matsuhiko Nishizawa) из Университета Тогоку разработал новую систему, которую можно получить двустадийным методом, одним из этапов которого является электрополимеризация.

В ходе нового процесса применяется платиновый мастер-электрод, на который наносится агарозный гель толщиной в 2 мм. На систему, погруженную в водный раствор мономера для получения поли-3,4-этилендиокситиофена, подается электрический потенциал, в результате чего в точке контакта гидрогеля с платиновым мастер-электродом образуется тонкий слой поли-3,4-этилендиокситиофена.

Дальнейшая трудность, с преодолнием которой столкнулись японские исследователи, заключалась в том, что необходимо было отделить таблетку гидрогеля от платины, не поврежда гидрогель; для этого Нисизава использовал естественное электрохимическое поведение поли-3,4-этилендиокситиофена.

Обратимое окисление и восстановление поли-3,4-этилендиокситиофена приводило к сжатию и расширению гидрогеля, а изменение объема гидрогеля способствовало частичному отслаиванию гидрогеля от платиновой пластины. Повторение циклов окисление-восстановление позволяет полностью отделить таблетку гидрогеля от электрода.

Исследователи из группы Нисизавы уверены, что предложенная ими общая стратегия может быть использована для получения более сложных систем, они предполагают, что таким методом можно будет нанести проводящие полимеры и на другие гели, как, например, коллаген и фибрин. Исследователи предполагают, что результаты исследования смогут найти применение в системах прямой электрической стимуляции мышечной ткани.

Кристин Шмидт, эксперт по биомедицинской инженерии из Университета Техас в Остине высоко оценивает результаты исследования, отмечая, что работа является наглядной демонстрацией того, как простой подход, позволяя сэкономить время и ресурсы, дает возможность получать имплантируемые сенсоры. Она добавляет, что работа японских исследователей закладывает фундамент для создания «гибких» гидрогелевых сенсоров, которые могут более эффективно взаимодействовать как с мягкими и сокращающимися тканями, так и с отдельными клетками.

 

 


Читайте:


Добавить комментарий


Защитный код
Обновить

Новинки полимеров:

ВНЕДРЕНИЕ ПОЛИМЕРА ПОЗВОЛЯЕТ УСТРАНЯТЬ ТЕЧЬ В ТРАНСФОРМАТОРАХ

News image

Проблема безопасной эксплуатации оборудования на подстанциях остается главной темой, волнующей умы энергетиков. Для продления сроков эксплуатации об...

НОВИНКИ KNAUF НА MOSBUILD 2010

News image

Продукты и технологии КНАУФ будут представлены в ЦВК «Экспоцентр» на Красной Пресне сразу на двух площадках: основном стенде в павильоне «Форум» и в...

ТЕХНОЛОГИЯ ДУБЛИРОВАНИЯ ПЛЁНКИ ПОЛИУРЕТАНОМ В АВТОПРОМЕ

News image

В настоящее время хорошо зарекомендовал себя на практике модуль крыши модели OpelCorsa и панорамная крыша OpelZafira, а также антенная крыша модели ...

ОПТИМИЗАЦИЯ ТОиР НА «ТЕХНОНИКОЛЬ»

News image

Проект реализуется специалистами компании Datastream Solutions CIS и является частью собственной программы Корпорации ТехноНИКОЛЬ по внедрению конце...

Новые продукты оргсинтеза:

НОВЫЕ ХИМИЧЕСКИЕ ТЕХНОЛОГИИ ДЛЯ СВЕРХКРИТИЧЕСКИХ СРЕД

News image

Даже специалисты с высшим техническим или естественнонаучным образованием в рамках обучения усваивают из этой проблемы лишь пару простейших основополагающих истин.

ТЕХНОЛОГИЯ ПРОИЗВОДСТВА ФРУКТОВЫХ НАПОЛНИТЕЛЕЙ

News image

Современные технологии производства фруктовых наполнителей позволяют получать продукт с различными органолептическими и физико-химическими показателями, с высокой степенью термостабильности - от мин...

BASF: новые стандарты для органических светодиодов

News image

Ассортимент специальных химикатов, предлагаемых подразделением BASF Performance Chemicals для кожевенной отрасли, включает химикаты для мокрой обработки и отделки кож и мехов.

Авторизация



YOU ARE HERE: Главная - Новости органической химии - Гелевые электроды для биологии и медицины

Великие химики:

ГЛАУБЕР (Glauber) Иоганн Рудольф

News image

Немецкий алхимик и врач Иоганн Рудольф Глаубер родился в Карлштадте в Нижней Франконии (Германия), в семье цирюльника; о его жизни до 1644 г. почти ...

ЗИГМОНДИ (Zsigmondy), Рихард Адольф

News image

Немецкий химик Рихард Адольф Зигмонди (Жигмонди) родился в Австрии, в Вене, в семье Ирмы (фон Закмари) и Адольфа Зигмонди, у которых было четверо де...

Институты химии:

Новосибирский институт биоорганической химии СО РАН

News image

Новосибирский институт биоорганической химии СО РАН был организован 1 апреля 1984 года на базе Отдела биохимии Новосибирского института органической...

Институт высокомолекулярных соединений

News image

Институт высокомолекулярных соединений является одним из ведущих научных центров страны, в котором проводятся фундаментальные исследования по химии,...