Современная химия




Гелевые электроды для биологии и медицины

гелевые электроды для биологии и медицины

Исследователи из Японии разработали органические гибкие и влажные электроды. Новые биосовместимые электроды состоят из токопроводящих полимеров, пронизывающих гидрогель; электроды способны работать при высокой влажности до месяца, что дает возможность применять их в биологических и медицинских исследованиях.

Производство дешевых и эффективных электродов, способных работать в биологических системах, критически важно для разработки имплантируемых медицинских устройств или для слежения за активности клеток. Для получения таких электродов потенциально могут применяться токопроводящие полимеры, как, например, поли-3,4-этилендиокситиофен [ - poly(3,4-ethylenedioxythiophene) – PEDOT], однако до настоящего времени их было практически невозможно закрепить на подходящих субстратах-носителях.

В настоящее время проводящие полимеры наносят на поверхность с помощью печати «чернилами» из жидкого полимера, эти «чернила» должны просохнуть, но этот процесс невозможен на влажных поверхностях, в том числе – и гидрогелях. Для решения этой проблемы Мацухико Нисизава (Matsuhiko Nishizawa) из Университета Тогоку разработал новую систему, которую можно получить двустадийным методом, одним из этапов которого является электрополимеризация.

В ходе нового процесса применяется платиновый мастер-электрод, на который наносится агарозный гель толщиной в 2 мм. На систему, погруженную в водный раствор мономера для получения поли-3,4-этилендиокситиофена, подается электрический потенциал, в результате чего в точке контакта гидрогеля с платиновым мастер-электродом образуется тонкий слой поли-3,4-этилендиокситиофена.

Дальнейшая трудность, с преодолнием которой столкнулись японские исследователи, заключалась в том, что необходимо было отделить таблетку гидрогеля от платины, не поврежда гидрогель; для этого Нисизава использовал естественное электрохимическое поведение поли-3,4-этилендиокситиофена.

Обратимое окисление и восстановление поли-3,4-этилендиокситиофена приводило к сжатию и расширению гидрогеля, а изменение объема гидрогеля способствовало частичному отслаиванию гидрогеля от платиновой пластины. Повторение циклов окисление-восстановление позволяет полностью отделить таблетку гидрогеля от электрода.

Исследователи из группы Нисизавы уверены, что предложенная ими общая стратегия может быть использована для получения более сложных систем, они предполагают, что таким методом можно будет нанести проводящие полимеры и на другие гели, как, например, коллаген и фибрин. Исследователи предполагают, что результаты исследования смогут найти применение в системах прямой электрической стимуляции мышечной ткани.

Кристин Шмидт, эксперт по биомедицинской инженерии из Университета Техас в Остине высоко оценивает результаты исследования, отмечая, что работа является наглядной демонстрацией того, как простой подход, позволяя сэкономить время и ресурсы, дает возможность получать имплантируемые сенсоры. Она добавляет, что работа японских исследователей закладывает фундамент для создания «гибких» гидрогелевых сенсоров, которые могут более эффективно взаимодействовать как с мягкими и сокращающимися тканями, так и с отдельными клетками.

 


Читайте:


Добавить комментарий


Защитный код
Обновить

жд перевозки хабаровск

Новинки полимеров:

СИЛИКОНОАКРИЛАТНЫЕ АДГЕЗИВЫ

News image

Одним из способов образования связей с пластмассовыми подложками с очень низкой энергией поверхности является осуществление реакций с участием или в...

ТЕХНОЛОГИЯ УСИЛЕНИЯ ЗДАНИЙ УГЛЕВОЛОКНИСТЫМИ МАТЕРИАЛАМИ

News image

Углеродные волокна (УВ) – органический материал, содержащий 92 - 99,99 % углерода. Углеродные волокна получают путем ступенчатой термообработки разл...

ПРОБЛЕМЫ ВНЕДРЕНИЯ НАНОКОМПОЗИТОВ

News image

- повышенная химическая стойкость в различных промышленных средах; - улучшенные физико-механические характеристики для ответственных узлов машин и ...

СИСТЕМА НАНЕСЕНИЯ ДВУХСТОРОННИХ ПОКРЫТИЙ ДЛЯ СИЛИКОНОВЫХ И ВОСКОВЫХ ЭМУЛЬСИЙ

News image

Однако известные технологии, такие как системы растровых валков с ванной, нанесение покрытий контактным способом с щелевым дозированием, двухсторонн...

Новые продукты оргсинтеза:

ПРЕИМУЩЕСТВА ГЛЮКОЗНО-ФРУКТОВЫХ СИРОПОВ

News image

Положительное влияние, которое оказывает сироп на безалкогольный напиток, основывается на его составе и технологии производства. Сироп представляет собой смесь моносахаров глюкозы и фруктозы, получа...

НОВЫЕ ВИДЫ ПОВЕРХНОСТНО-АКТИВНЫХ ВЕЩЕСТВ

News image

На практике традиционные поверхностно-активные вещества обычно включают в себя гидрофобную цепь, прикрепленную к сравнительно компактной полярной или гидрофильной головке. Варьируя молекулярный вес ...

ТЕХНОЛОГИЯ DUPONT ПОЛУЧЕНИЯ ВЫСОКООЛЕИНОВЫХ СОЕВЫХ МАСЕЛ

News image

DuPont запатентовала технологию получения высокоолеинового соевого масла, обладающего высокой окислительной стабильностью. Это масло имеет содержание С18 : 1 более 65% доли жирных кислот. Масло и...

Авторизация



YOU ARE HERE: Главная - Новости органической химии - Гелевые электроды для биологии и медицины

Великие химики:

ГЛАУБЕР (Glauber) Иоганн Рудольф

News image

Немецкий алхимик и врач Иоганн Рудольф Глаубер родился в Карлштадте в Нижней Франконии (Германия), в семье цирюльника; о его жизни до 1644 г. почти ...

ВЕРНЕР (Werner), Альфред

News image

Швейцарский химик Альфред Вернер родился в г. Мюлузе, расположенном во французской провинции Эльзас. Он был последним из четырех детей токаря Жана А...

Институты химии:

Институт белка РАН

News image

Институт белка РАН организован по Постановлению Президиума АН СССР 9 июня 1967 г. с целью развертывания фундаментальных исследований по проблеме бел...

Институт геохимии и аналитической химии им.В.И.Вернадского

News image

В первые годы после войны Институт занимался проблемами атомной энергетики. Принимал участие в аналитическом обеспечении технологических процессов п...